Mister Exam

Other calculators


(3*tan(x)+5)*x^7

Derivative of (3*tan(x)+5)*x^7

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                7
(3*tan(x) + 5)*x 
x7(3tan(x)+5)x^{7} \left(3 \tan{\left(x \right)} + 5\right)
(3*tan(x) + 5)*x^7
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3tan(x)+5f{\left(x \right)} = 3 \tan{\left(x \right)} + 5; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 3tan(x)+53 \tan{\left(x \right)} + 5 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Rewrite the function to be differentiated:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. The derivative of cosine is negative sine:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          Now plug in to the quotient rule:

          sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

        So, the result is: 3(sin2(x)+cos2(x))cos2(x)\frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}}

      2. The derivative of the constant 55 is zero.

      The result is: 3(sin2(x)+cos2(x))cos2(x)\frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}}

    g(x)=x7g{\left(x \right)} = x^{7}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x7x^{7} goes to 7x67 x^{6}

    The result is: 3x7(sin2(x)+cos2(x))cos2(x)+7x6(3tan(x)+5)\frac{3 x^{7} \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + 7 x^{6} \left(3 \tan{\left(x \right)} + 5\right)

  2. Now simplify:

    x6(3xcos2(x)+21tan(x)+35)x^{6} \left(\frac{3 x}{\cos^{2}{\left(x \right)}} + 21 \tan{\left(x \right)} + 35\right)


The answer is:

x6(3xcos2(x)+21tan(x)+35)x^{6} \left(\frac{3 x}{\cos^{2}{\left(x \right)}} + 21 \tan{\left(x \right)} + 35\right)

The graph
02468-8-6-4-2-1010-20000000002000000000
The first derivative [src]
 7 /         2   \      6               
x *\3 + 3*tan (x)/ + 7*x *(3*tan(x) + 5)
x7(3tan2(x)+3)+7x6(3tan(x)+5)x^{7} \left(3 \tan^{2}{\left(x \right)} + 3\right) + 7 x^{6} \left(3 \tan{\left(x \right)} + 5\right)
The second derivative [src]
   5 /                     /       2   \    2 /       2   \       \
6*x *\35 + 21*tan(x) + 7*x*\1 + tan (x)/ + x *\1 + tan (x)/*tan(x)/
6x5(x2(tan2(x)+1)tan(x)+7x(tan2(x)+1)+21tan(x)+35)6 x^{5} \left(x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 7 x \left(\tan^{2}{\left(x \right)} + 1\right) + 21 \tan{\left(x \right)} + 35\right)
The third derivative [src]
   4 /                        /       2   \    3 /       2   \ /         2   \       2 /       2   \       \
6*x *\175 + 105*tan(x) + 63*x*\1 + tan (x)/ + x *\1 + tan (x)/*\1 + 3*tan (x)/ + 21*x *\1 + tan (x)/*tan(x)/
6x4(x3(tan2(x)+1)(3tan2(x)+1)+21x2(tan2(x)+1)tan(x)+63x(tan2(x)+1)+105tan(x)+175)6 x^{4} \left(x^{3} \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right) + 21 x^{2} \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)} + 63 x \left(\tan^{2}{\left(x \right)} + 1\right) + 105 \tan{\left(x \right)} + 175\right)
The graph
Derivative of (3*tan(x)+5)*x^7