Mister Exam

Derivative of y=sqrt(8x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _____
\/ 8*x 
8x\sqrt{8 x}
d /  _____\
--\\/ 8*x /
dx         
ddx8x\frac{d}{d x} \sqrt{8 x}
Detail solution
  1. Let u=8xu = 8 x.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx8x\frac{d}{d x} 8 x:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 88

    The result of the chain rule is:

    2x\frac{\sqrt{2}}{\sqrt{x}}


The answer is:

2x\frac{\sqrt{2}}{\sqrt{x}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
    ___   ___
2*\/ 2 *\/ x 
-------------
     2*x     
22x2x\frac{2 \sqrt{2} \sqrt{x}}{2 x}
The second derivative [src]
   ___ 
-\/ 2  
-------
    3/2
 2*x   
22x32- \frac{\sqrt{2}}{2 x^{\frac{3}{2}}}
The third derivative [src]
    ___
3*\/ 2 
-------
    5/2
 4*x   
324x52\frac{3 \sqrt{2}}{4 x^{\frac{5}{2}}}
The graph
Derivative of y=sqrt(8x)