Detail solution
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 25 \sin{\left(x \right)} \cos^{24}{\left(x \right)}$$
The second derivative
[src]
23 / 2 2 \
25*cos (x)*\- cos (x) + 24*sin (x)/
$$25 \cdot \left(24 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{23}{\left(x \right)}$$
The third derivative
[src]
22 / 2 2 \
25*cos (x)*\- 552*sin (x) + 73*cos (x)/*sin(x)
$$25 \left(- 552 \sin^{2}{\left(x \right)} + 73 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos^{22}{\left(x \right)}$$