25 cos (x)
d / 25 \ --\cos (x)/ dx
Let u=cos(x)u = \cos{\left(x \right)}u=cos(x).
Apply the power rule: u25u^{25}u25 goes to 25u2425 u^{24}25u24
Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}dxdcos(x):
The derivative of cosine is negative sine:
The result of the chain rule is:
The answer is:
24 -25*cos (x)*sin(x)
23 / 2 2 \ 25*cos (x)*\- cos (x) + 24*sin (x)/
22 / 2 2 \ 25*cos (x)*\- 552*sin (x) + 73*cos (x)/*sin(x)