Mister Exam

Derivative of y=x⁴*sinx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 4       
x *sin(x)
$$x^{4} \sin{\left(x \right)}$$
d / 4       \
--\x *sin(x)/
dx           
$$\frac{d}{d x} x^{4} \sin{\left(x \right)}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. The derivative of sine is cosine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
 4             3       
x *cos(x) + 4*x *sin(x)
$$x^{4} \cos{\left(x \right)} + 4 x^{3} \sin{\left(x \right)}$$
The second derivative [src]
 2 /             2                    \
x *\12*sin(x) - x *sin(x) + 8*x*cos(x)/
$$x^{2} \left(- x^{2} \sin{\left(x \right)} + 8 x \cos{\left(x \right)} + 12 \sin{\left(x \right)}\right)$$
The third derivative [src]
  /             3              2                     \
x*\24*sin(x) - x *cos(x) - 12*x *sin(x) + 36*x*cos(x)/
$$x \left(- x^{3} \cos{\left(x \right)} - 12 x^{2} \sin{\left(x \right)} + 36 x \cos{\left(x \right)} + 24 \sin{\left(x \right)}\right)$$
The graph
Derivative of y=x⁴*sinx