Mister Exam

Other calculators


y=ln^5(sqrt(3x+5))

Derivative of y=ln^5(sqrt(3x+5))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5/  _________\
log \\/ 3*x + 5 /
log(3x+5)5\log{\left(\sqrt{3 x + 5} \right)}^{5}
log(sqrt(3*x + 5))^5
Detail solution
  1. Let u=log(3x+5)u = \log{\left(\sqrt{3 x + 5} \right)}.

  2. Apply the power rule: u5u^{5} goes to 5u45 u^{4}

  3. Then, apply the chain rule. Multiply by ddxlog(3x+5)\frac{d}{d x} \log{\left(\sqrt{3 x + 5} \right)}:

    1. Let u=3x+5u = \sqrt{3 x + 5}.

    2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

    3. Then, apply the chain rule. Multiply by ddx3x+5\frac{d}{d x} \sqrt{3 x + 5}:

      1. Let u=3x+5u = 3 x + 5.

      2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

      3. Then, apply the chain rule. Multiply by ddx(3x+5)\frac{d}{d x} \left(3 x + 5\right):

        1. Differentiate 3x+53 x + 5 term by term:

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: xx goes to 11

            So, the result is: 33

          2. The derivative of the constant 55 is zero.

          The result is: 33

        The result of the chain rule is:

        323x+5\frac{3}{2 \sqrt{3 x + 5}}

      The result of the chain rule is:

      32(3x+5)\frac{3}{2 \left(3 x + 5\right)}

    The result of the chain rule is:

    15log(3x+5)42(3x+5)\frac{15 \log{\left(\sqrt{3 x + 5} \right)}^{4}}{2 \left(3 x + 5\right)}

  4. Now simplify:

    15log(3x+5)432(3x+5)\frac{15 \log{\left(3 x + 5 \right)}^{4}}{32 \left(3 x + 5\right)}


The answer is:

15log(3x+5)432(3x+5)\frac{15 \log{\left(3 x + 5 \right)}^{4}}{32 \left(3 x + 5\right)}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
      4/  _________\
15*log \\/ 3*x + 5 /
--------------------
    2*(3*x + 5)     
15log(3x+5)42(3x+5)\frac{15 \log{\left(\sqrt{3 x + 5} \right)}^{4}}{2 \left(3 x + 5\right)}
The second derivative [src]
                     /       /  _________\\
      3/  _________\ |    log\\/ 5 + 3*x /|
45*log \\/ 5 + 3*x /*|1 - ----------------|
                     \           2        /
-------------------------------------------
                          2                
                 (5 + 3*x)                 
45(1log(3x+5)2)log(3x+5)3(3x+5)2\frac{45 \left(1 - \frac{\log{\left(\sqrt{3 x + 5} \right)}}{2}\right) \log{\left(\sqrt{3 x + 5} \right)}^{3}}{\left(3 x + 5\right)^{2}}
The third derivative [src]
       2/  _________\ /3      2/  _________\        /  _________\\
135*log \\/ 5 + 3*x /*|- + log \\/ 5 + 3*x / - 3*log\\/ 5 + 3*x /|
                      \2                                         /
------------------------------------------------------------------
                                     3                            
                            (5 + 3*x)                             
135(log(3x+5)23log(3x+5)+32)log(3x+5)2(3x+5)3\frac{135 \left(\log{\left(\sqrt{3 x + 5} \right)}^{2} - 3 \log{\left(\sqrt{3 x + 5} \right)} + \frac{3}{2}\right) \log{\left(\sqrt{3 x + 5} \right)}^{2}}{\left(3 x + 5\right)^{3}}
The graph
Derivative of y=ln^5(sqrt(3x+5))