Mister Exam

Other calculators


x^4/(x+1)^3

Derivative of x^4/(x+1)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    4   
   x    
--------
       3
(x + 1) 
x4(x+1)3\frac{x^{4}}{\left(x + 1\right)^{3}}
x^4/(x + 1)^3
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x4f{\left(x \right)} = x^{4} and g(x)=(x+1)3g{\left(x \right)} = \left(x + 1\right)^{3}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x4x^{4} goes to 4x34 x^{3}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=x+1u = x + 1.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(x+1)\frac{d}{d x} \left(x + 1\right):

      1. Differentiate x+1x + 1 term by term:

        1. The derivative of the constant 11 is zero.

        2. Apply the power rule: xx goes to 11

        The result is: 11

      The result of the chain rule is:

      3(x+1)23 \left(x + 1\right)^{2}

    Now plug in to the quotient rule:

    3x4(x+1)2+4x3(x+1)3(x+1)6\frac{- 3 x^{4} \left(x + 1\right)^{2} + 4 x^{3} \left(x + 1\right)^{3}}{\left(x + 1\right)^{6}}

  2. Now simplify:

    x3(x+4)(x+1)4\frac{x^{3} \left(x + 4\right)}{\left(x + 1\right)^{4}}


The answer is:

x3(x+4)(x+1)4\frac{x^{3} \left(x + 4\right)}{\left(x + 1\right)^{4}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
       4          3  
    3*x        4*x   
- -------- + --------
         4          3
  (x + 1)    (x + 1) 
3x4(x+1)4+4x3(x+1)3- \frac{3 x^{4}}{\left(x + 1\right)^{4}} + \frac{4 x^{3}}{\left(x + 1\right)^{3}}
The second derivative [src]
      /        2           \
    2 |       x        2*x |
12*x *|1 + -------- - -----|
      |           2   1 + x|
      \    (1 + x)         /
----------------------------
                 3          
          (1 + x)           
12x2(x2(x+1)22xx+1+1)(x+1)3\frac{12 x^{2} \left(\frac{x^{2}}{\left(x + 1\right)^{2}} - \frac{2 x}{x + 1} + 1\right)}{\left(x + 1\right)^{3}}
The third derivative [src]
     /                 3          2  \
     |     9*x      5*x       12*x   |
12*x*|2 - ----- - -------- + --------|
     |    1 + x          3          2|
     \            (1 + x)    (1 + x) /
--------------------------------------
                      3               
               (1 + x)                
12x(5x3(x+1)3+12x2(x+1)29xx+1+2)(x+1)3\frac{12 x \left(- \frac{5 x^{3}}{\left(x + 1\right)^{3}} + \frac{12 x^{2}}{\left(x + 1\right)^{2}} - \frac{9 x}{x + 1} + 2\right)}{\left(x + 1\right)^{3}}
The graph
Derivative of x^4/(x+1)^3