Mister Exam

Other calculators


2^(1/x)

Derivative of 2^(1/x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x ___
\/ 2 
$$2^{\frac{1}{x}}$$
2^(1/x)
Detail solution
  1. Let .

  2. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
 x ___        
-\/ 2 *log(2) 
--------------
       2      
      x       
$$- \frac{2^{\frac{1}{x}} \log{\left(2 \right)}}{x^{2}}$$
The second derivative [src]
x ___ /    log(2)\       
\/ 2 *|2 + ------|*log(2)
      \      x   /       
-------------------------
             3           
            x            
$$\frac{2^{\frac{1}{x}} \left(2 + \frac{\log{\left(2 \right)}}{x}\right) \log{\left(2 \right)}}{x^{3}}$$
The third derivative [src]
       /       2              \        
 x ___ |    log (2)   6*log(2)|        
-\/ 2 *|6 + ------- + --------|*log(2) 
       |        2        x    |        
       \       x              /        
---------------------------------------
                    4                  
                   x                   
$$- \frac{2^{\frac{1}{x}} \left(6 + \frac{6 \log{\left(2 \right)}}{x} + \frac{\log{\left(2 \right)}^{2}}{x^{2}}\right) \log{\left(2 \right)}}{x^{4}}$$
The graph
Derivative of 2^(1/x)