Mister Exam

Other calculators


(4x^3-3x^2)/(2x-1)^2

Derivative of (4x^3-3x^2)/(2x-1)^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3      2
4*x  - 3*x 
-----------
          2
 (2*x - 1) 
$$\frac{4 x^{3} - 3 x^{2}}{\left(2 x - 1\right)^{2}}$$
  /   3      2\
d |4*x  - 3*x |
--|-----------|
dx|          2|
  \ (2*x - 1) /
$$\frac{d}{d x} \frac{4 x^{3} - 3 x^{2}}{\left(2 x - 1\right)^{2}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
           2             /   3      2\
-6*x + 12*x    (4 - 8*x)*\4*x  - 3*x /
------------ + -----------------------
          2                    4      
 (2*x - 1)            (2*x - 1)       
$$\frac{12 x^{2} - 6 x}{\left(2 x - 1\right)^{2}} + \frac{\left(- 8 x + 4\right) \left(4 x^{3} - 3 x^{2}\right)}{\left(2 x - 1\right)^{4}}$$
The second derivative [src]
  /              2           \
  |           4*x *(-3 + 4*x)|
6*|-1 - 4*x + ---------------|
  |                       2  |
  \             (-1 + 2*x)   /
------------------------------
                   2          
         (-1 + 2*x)           
$$\frac{6 \cdot \left(\frac{4 x^{2} \cdot \left(4 x - 3\right)}{\left(2 x - 1\right)^{2}} - 4 x - 1\right)}{\left(2 x - 1\right)^{2}}$$
The third derivative [src]
   /                                 2           \
   |    3*(-1 + 4*x)     18*x     8*x *(-3 + 4*x)|
24*|1 - ------------ + -------- - ---------------|
   |      -1 + 2*x     -1 + 2*x               3  |
   \                                (-1 + 2*x)   /
--------------------------------------------------
                             2                    
                   (-1 + 2*x)                     
$$\frac{24 \left(- \frac{8 x^{2} \cdot \left(4 x - 3\right)}{\left(2 x - 1\right)^{3}} + \frac{18 x}{2 x - 1} + 1 - \frac{3 \cdot \left(4 x - 1\right)}{2 x - 1}\right)}{\left(2 x - 1\right)^{2}}$$
The graph
Derivative of (4x^3-3x^2)/(2x-1)^2