Mister Exam

Other calculators


y/(sqrt(5+y^2))

Derivative of y/(sqrt(5+y^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     y     
-----------
   ________
  /      2 
\/  5 + y  
yy2+5\frac{y}{\sqrt{y^{2} + 5}}
y/sqrt(5 + y^2)
Detail solution
  1. Apply the quotient rule, which is:

    ddyf(y)g(y)=f(y)ddyg(y)+g(y)ddyf(y)g2(y)\frac{d}{d y} \frac{f{\left(y \right)}}{g{\left(y \right)}} = \frac{- f{\left(y \right)} \frac{d}{d y} g{\left(y \right)} + g{\left(y \right)} \frac{d}{d y} f{\left(y \right)}}{g^{2}{\left(y \right)}}

    f(y)=yf{\left(y \right)} = y and g(y)=y2+5g{\left(y \right)} = \sqrt{y^{2} + 5}.

    To find ddyf(y)\frac{d}{d y} f{\left(y \right)}:

    1. Apply the power rule: yy goes to 11

    To find ddyg(y)\frac{d}{d y} g{\left(y \right)}:

    1. Let u=y2+5u = y^{2} + 5.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddy(y2+5)\frac{d}{d y} \left(y^{2} + 5\right):

      1. Differentiate y2+5y^{2} + 5 term by term:

        1. The derivative of the constant 55 is zero.

        2. Apply the power rule: y2y^{2} goes to 2y2 y

        The result is: 2y2 y

      The result of the chain rule is:

      yy2+5\frac{y}{\sqrt{y^{2} + 5}}

    Now plug in to the quotient rule:

    y2y2+5+y2+5y2+5\frac{- \frac{y^{2}}{\sqrt{y^{2} + 5}} + \sqrt{y^{2} + 5}}{y^{2} + 5}

  2. Now simplify:

    5(y2+5)32\frac{5}{\left(y^{2} + 5\right)^{\frac{3}{2}}}


The answer is:

5(y2+5)32\frac{5}{\left(y^{2} + 5\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-10102-2
The first derivative [src]
                    2    
     1             y     
----------- - -----------
   ________           3/2
  /      2    /     2\   
\/  5 + y     \5 + y /   
y2(y2+5)32+1y2+5- \frac{y^{2}}{\left(y^{2} + 5\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{y^{2} + 5}}
The second derivative [src]
  /         2 \
  |      3*y  |
y*|-3 + ------|
  |          2|
  \     5 + y /
---------------
          3/2  
  /     2\     
  \5 + y /     
y(3y2y2+53)(y2+5)32\frac{y \left(\frac{3 y^{2}}{y^{2} + 5} - 3\right)}{\left(y^{2} + 5\right)^{\frac{3}{2}}}
The third derivative [src]
  /                 /         2 \\
  |               2 |      5*y  ||
  |              y *|-3 + ------||
  |         2       |          2||
  |      3*y        \     5 + y /|
3*|-1 + ------ - ----------------|
  |          2             2     |
  \     5 + y         5 + y      /
----------------------------------
                   3/2            
           /     2\               
           \5 + y /               
3(y2(5y2y2+53)y2+5+3y2y2+51)(y2+5)32\frac{3 \left(- \frac{y^{2} \left(\frac{5 y^{2}}{y^{2} + 5} - 3\right)}{y^{2} + 5} + \frac{3 y^{2}}{y^{2} + 5} - 1\right)}{\left(y^{2} + 5\right)^{\frac{3}{2}}}
The graph
Derivative of y/(sqrt(5+y^2))