Mister Exam

Other calculators


y/(sqrt(5+y^2))

Derivative of y/(sqrt(5+y^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     y     
-----------
   ________
  /      2 
\/  5 + y  
$$\frac{y}{\sqrt{y^{2} + 5}}$$
y/sqrt(5 + y^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. Apply the power rule: goes to

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    2    
     1             y     
----------- - -----------
   ________           3/2
  /      2    /     2\   
\/  5 + y     \5 + y /   
$$- \frac{y^{2}}{\left(y^{2} + 5\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{y^{2} + 5}}$$
The second derivative [src]
  /         2 \
  |      3*y  |
y*|-3 + ------|
  |          2|
  \     5 + y /
---------------
          3/2  
  /     2\     
  \5 + y /     
$$\frac{y \left(\frac{3 y^{2}}{y^{2} + 5} - 3\right)}{\left(y^{2} + 5\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /                 /         2 \\
  |               2 |      5*y  ||
  |              y *|-3 + ------||
  |         2       |          2||
  |      3*y        \     5 + y /|
3*|-1 + ------ - ----------------|
  |          2             2     |
  \     5 + y         5 + y      /
----------------------------------
                   3/2            
           /     2\               
           \5 + y /               
$$\frac{3 \left(- \frac{y^{2} \left(\frac{5 y^{2}}{y^{2} + 5} - 3\right)}{y^{2} + 5} + \frac{3 y^{2}}{y^{2} + 5} - 1\right)}{\left(y^{2} + 5\right)^{\frac{3}{2}}}$$
The graph
Derivative of y/(sqrt(5+y^2))