Mister Exam

Other calculators


y/(sqrt(5-y^2))

Derivative of y/(sqrt(5-y^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     y     
-----------
   ________
  /      2 
\/  5 - y  
$$\frac{y}{\sqrt{5 - y^{2}}}$$
y/sqrt(5 - y^2)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    2    
     1             y     
----------- + -----------
   ________           3/2
  /      2    /     2\   
\/  5 - y     \5 - y /   
$$\frac{y^{2}}{\left(5 - y^{2}\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{5 - y^{2}}}$$
The second derivative [src]
  /         2 \
  |      3*y  |
y*|3 - -------|
  |          2|
  \    -5 + y /
---------------
          3/2  
  /     2\     
  \5 - y /     
$$\frac{y \left(- \frac{3 y^{2}}{y^{2} - 5} + 3\right)}{\left(5 - y^{2}\right)^{\frac{3}{2}}}$$
The third derivative [src]
   /                  /          2 \\
   |                2 |       5*y  ||
   |               y *|-3 + -------||
   |          2       |           2||
   |       3*y        \     -5 + y /|
-3*|-1 + ------- + -----------------|
   |           2              2     |
   \     -5 + y          5 - y      /
-------------------------------------
                     3/2             
             /     2\                
             \5 - y /                
$$- \frac{3 \left(\frac{3 y^{2}}{y^{2} - 5} + \frac{y^{2} \left(\frac{5 y^{2}}{y^{2} - 5} - 3\right)}{5 - y^{2}} - 1\right)}{\left(5 - y^{2}\right)^{\frac{3}{2}}}$$
The graph
Derivative of y/(sqrt(5-y^2))