Mister Exam

Other calculators


y/(sqrt(5+y^2))

Integral of y/(sqrt(5+y^2)) dy

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       y        
 |  ----------- dy
 |     ________   
 |    /      2    
 |  \/  5 + y     
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{y}{\sqrt{y^{2} + 5}}\, dy$$
Integral(y/sqrt(5 + y^2), (y, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant is the constant times the variable of integration:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                         ________
 |      y                 /      2 
 | ----------- dy = C + \/  5 + y  
 |    ________                     
 |   /      2                      
 | \/  5 + y                       
 |                                 
/                                  
$$\int \frac{y}{\sqrt{y^{2} + 5}}\, dy = C + \sqrt{y^{2} + 5}$$
The graph
The answer [src]
  ___     ___
\/ 6  - \/ 5 
$$- \sqrt{5} + \sqrt{6}$$
=
=
  ___     ___
\/ 6  - \/ 5 
$$- \sqrt{5} + \sqrt{6}$$
sqrt(6) - sqrt(5)
Numerical answer [src]
0.213421765283388
0.213421765283388
The graph
Integral of y/(sqrt(5+y^2)) dy

    Use the examples entering the upper and lower limits of integration.