Mister Exam

Derivative of x(x+1)(x+2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*(x + 1)*(x + 2)
x(x+1)(x+2)x \left(x + 1\right) \left(x + 2\right)
(x*(x + 1))*(x + 2)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=x(x+1)f{\left(x \right)} = x \left(x + 1\right); to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the product rule:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

      f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Apply the power rule: xx goes to 11

      g(x)=x+1g{\left(x \right)} = x + 1; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Differentiate x+1x + 1 term by term:

        1. Apply the power rule: xx goes to 11

        2. The derivative of the constant 11 is zero.

        The result is: 11

      The result is: 2x+12 x + 1

    g(x)=x+2g{\left(x \right)} = x + 2; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x+2x + 2 term by term:

      1. Apply the power rule: xx goes to 11

      2. The derivative of the constant 22 is zero.

      The result is: 11

    The result is: x(x+1)+(x+2)(2x+1)x \left(x + 1\right) + \left(x + 2\right) \left(2 x + 1\right)

  2. Now simplify:

    3x2+6x+23 x^{2} + 6 x + 2


The answer is:

3x2+6x+23 x^{2} + 6 x + 2

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
x*(x + 1) + (1 + 2*x)*(x + 2)
x(x+1)+(x+2)(2x+1)x \left(x + 1\right) + \left(x + 2\right) \left(2 x + 1\right)
The second derivative [src]
6*(1 + x)
6(x+1)6 \left(x + 1\right)
The third derivative [src]
6
66
The graph
Derivative of x(x+1)(x+2)