Mister Exam

Derivative of te^t

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   t
t*E 
ette^{t} t
t*E^t
Detail solution
  1. Apply the product rule:

    ddtf(t)g(t)=f(t)ddtg(t)+g(t)ddtf(t)\frac{d}{d t} f{\left(t \right)} g{\left(t \right)} = f{\left(t \right)} \frac{d}{d t} g{\left(t \right)} + g{\left(t \right)} \frac{d}{d t} f{\left(t \right)}

    f(t)=tf{\left(t \right)} = t; to find ddtf(t)\frac{d}{d t} f{\left(t \right)}:

    1. Apply the power rule: tt goes to 11

    g(t)=etg{\left(t \right)} = e^{t}; to find ddtg(t)\frac{d}{d t} g{\left(t \right)}:

    1. The derivative of ete^{t} is itself.

    The result is: et+tete^{t} + t e^{t}

  2. Now simplify:

    (t+1)et\left(t + 1\right) e^{t}


The answer is:

(t+1)et\left(t + 1\right) e^{t}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
 t      t
E  + t*e 
et+tete^{t} + t e^{t}
The second derivative [src]
         t
(2 + t)*e 
(t+2)et\left(t + 2\right) e^{t}
The third derivative [src]
         t
(3 + t)*e 
(t+3)et\left(t + 3\right) e^{t}
The graph
Derivative of te^t