t t*E
t*E^t
Apply the product rule:
f(t)=tf{\left(t \right)} = tf(t)=t; to find ddtf(t)\frac{d}{d t} f{\left(t \right)}dtdf(t):
Apply the power rule: ttt goes to 111
g(t)=etg{\left(t \right)} = e^{t}g(t)=et; to find ddtg(t)\frac{d}{d t} g{\left(t \right)}dtdg(t):
The derivative of ete^{t}et is itself.
The result is: et+tete^{t} + t e^{t}et+tet
Now simplify:
The answer is:
t t E + t*e
t (2 + t)*e
t (3 + t)*e