Mister Exam

Derivative of t-sint

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
t - sin(t)
tsin(t)t - \sin{\left(t \right)}
t - sin(t)
Detail solution
  1. Differentiate tsin(t)t - \sin{\left(t \right)} term by term:

    1. Apply the power rule: tt goes to 11

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. The derivative of sine is cosine:

        ddtsin(t)=cos(t)\frac{d}{d t} \sin{\left(t \right)} = \cos{\left(t \right)}

      So, the result is: cos(t)- \cos{\left(t \right)}

    The result is: 1cos(t)1 - \cos{\left(t \right)}


The answer is:

1cos(t)1 - \cos{\left(t \right)}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
1 - cos(t)
1cos(t)1 - \cos{\left(t \right)}
The second derivative [src]
sin(t)
sin(t)\sin{\left(t \right)}
The third derivative [src]
cos(t)
cos(t)\cos{\left(t \right)}
The graph
Derivative of t-sint