Mister Exam

Integral of x(x+1)(x+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  x*(x + 1)*(x + 2) dx
 |                      
/                       
0                       
01x(x+1)(x+2)dx\int\limits_{0}^{1} x \left(x + 1\right) \left(x + 2\right)\, dx
Integral((x*(x + 1))*(x + 2), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

    x(x+1)(x+2)=x3+3x2+2xx \left(x + 1\right) \left(x + 2\right) = x^{3} + 3 x^{2} + 2 x

  2. Integrate term-by-term:

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      x3dx=x44\int x^{3}\, dx = \frac{x^{4}}{4}

    1. The integral of a constant times a function is the constant times the integral of the function:

      3x2dx=3x2dx\int 3 x^{2}\, dx = 3 \int x^{2}\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

      So, the result is: x3x^{3}

    1. The integral of a constant times a function is the constant times the integral of the function:

      2xdx=2xdx\int 2 x\, dx = 2 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: x2x^{2}

    The result is: x44+x3+x2\frac{x^{4}}{4} + x^{3} + x^{2}

  3. Now simplify:

    x2(x24+x+1)x^{2} \left(\frac{x^{2}}{4} + x + 1\right)

  4. Add the constant of integration:

    x2(x24+x+1)+constantx^{2} \left(\frac{x^{2}}{4} + x + 1\right)+ \mathrm{constant}


The answer is:

x2(x24+x+1)+constantx^{2} \left(\frac{x^{2}}{4} + x + 1\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                      4
 |                             2    3   x 
 | x*(x + 1)*(x + 2) dx = C + x  + x  + --
 |                                      4 
/                                         
x(x+1)(x+2)dx=C+x44+x3+x2\int x \left(x + 1\right) \left(x + 2\right)\, dx = C + \frac{x^{4}}{4} + x^{3} + x^{2}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
9/4
94\frac{9}{4}
=
=
9/4
94\frac{9}{4}
9/4
Numerical answer [src]
2.25
2.25
The graph
Integral of x(x+1)(x+2) dx

    Use the examples entering the upper and lower limits of integration.