Mister Exam

Other calculators


4*(x^2^(1/3))

Derivative of 4*(x^2^(1/3))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3 ___
   \/ 2 
4*x     
$$4 x^{\sqrt[3]{2}}$$
  /   3 ___\
d |   \/ 2 |
--\4*x     /
dx          
$$\frac{d}{d x} 4 x^{\sqrt[3]{2}}$$
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Apply the power rule: goes to

    So, the result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
         3 ___
  3 ___  \/ 2 
4*\/ 2 *x     
--------------
      x       
$$\frac{4 \cdot \sqrt[3]{2} x^{\sqrt[3]{2}}}{x}$$
The second derivative [src]
          3 ___            
   3 ___  \/ 2  /    3 ___\
-4*\/ 2 *x     *\1 - \/ 2 /
---------------------------
              2            
             x             
$$- \frac{4 \cdot \sqrt[3]{2} x^{\sqrt[3]{2}} \cdot \left(- \sqrt[3]{2} + 1\right)}{x^{2}}$$
The third derivative [src]
   3 ___                       
   \/ 2  /       2/3     3 ___\
4*x     *\2 - 3*2    + 2*\/ 2 /
-------------------------------
                3              
               x               
$$\frac{4 x^{\sqrt[3]{2}} \left(- 3 \cdot 2^{\frac{2}{3}} + 2 + 2 \cdot \sqrt[3]{2}\right)}{x^{3}}$$
The graph
Derivative of 4*(x^2^(1/3))