Mister Exam

Derivative of √(x+√x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___________
  /       ___ 
\/  x + \/ x  
$$\sqrt{\sqrt{x} + x}$$
  /   ___________\
d |  /       ___ |
--\\/  x + \/ x  /
dx                
$$\frac{d}{d x} \sqrt{\sqrt{x} + x}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Apply the power rule: goes to

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
 1      1     
 - + -------  
 2       ___  
     4*\/ x   
--------------
   ___________
  /       ___ 
\/  x + \/ x  
$$\frac{\frac{1}{2} + \frac{1}{4 \sqrt{x}}}{\sqrt{\sqrt{x} + x}}$$
The second derivative [src]
 /                  2\ 
 |       /      1  \ | 
 |       |2 + -----| | 
 |       |      ___| | 
 | 2     \    \/ x / | 
-|---- + ------------| 
 | 3/2          ___  | 
 \x       x + \/ x   / 
-----------------------
         ___________   
        /       ___    
   16*\/  x + \/ x     
$$- \frac{\frac{\left(2 + \frac{1}{\sqrt{x}}\right)^{2}}{\sqrt{x} + x} + \frac{2}{x^{\frac{3}{2}}}}{16 \sqrt{\sqrt{x} + x}}$$
The third derivative [src]
  /                  3                   \
  |       /      1  \       /      1  \  |
  |       |2 + -----|     2*|2 + -----|  |
  |       |      ___|       |      ___|  |
  | 4     \    \/ x /       \    \/ x /  |
3*|---- + ------------ + ----------------|
  | 5/2              2    3/2 /      ___\|
  |x      /      ___\    x   *\x + \/ x /|
  \       \x + \/ x /                    /
------------------------------------------
                  ___________             
                 /       ___              
            64*\/  x + \/ x               
$$\frac{3 \left(\frac{\left(2 + \frac{1}{\sqrt{x}}\right)^{3}}{\left(\sqrt{x} + x\right)^{2}} + \frac{2 \cdot \left(2 + \frac{1}{\sqrt{x}}\right)}{x^{\frac{3}{2}} \left(\sqrt{x} + x\right)} + \frac{4}{x^{\frac{5}{2}}}\right)}{64 \sqrt{\sqrt{x} + x}}$$
The graph
Derivative of √(x+√x)