The second derivative
[src]
2
1 1 (-1 + 2*x) 1
- ------------- - ---------------- - ---------------- + ------------------
___________ 3/2 _______ 3/2 ___ 3/2
\/ x*(1 - x) 4*x *\/ 1 - x 4*(x*(1 - x)) 4*\/ x *(1 - x)
$$- \frac{1}{\sqrt{x \left(1 - x\right)}} - \frac{\left(2 x - 1\right)^{2}}{4 \left(x \left(1 - x\right)\right)^{\frac{3}{2}}} + \frac{1}{4 \sqrt{x} \left(1 - x\right)^{\frac{3}{2}}} - \frac{1}{4 x^{\frac{3}{2}} \sqrt{1 - x}}$$
The third derivative
[src]
3
12*(-1 + 2*x) 3*(-1 + 2*x) 2 3 3
- -------------- - -------------- - --------------- + -------------- + ----------------
3/2 5/2 3/2 3/2 5/2 _______ ___ 5/2
(x*(1 - x)) (x*(1 - x)) x *(1 - x) x *\/ 1 - x \/ x *(1 - x)
---------------------------------------------------------------------------------------
8
$$\frac{- \frac{12 \left(2 x - 1\right)}{\left(x \left(1 - x\right)\right)^{\frac{3}{2}}} - \frac{3 \left(2 x - 1\right)^{3}}{\left(x \left(1 - x\right)\right)^{\frac{5}{2}}} + \frac{3}{\sqrt{x} \left(1 - x\right)^{\frac{5}{2}}} - \frac{2}{x^{\frac{3}{2}} \left(1 - x\right)^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}} \sqrt{1 - x}}}{8}$$