/ ___ _______\ log\\/ x + \/ x + 1 /
log(sqrt(x) + sqrt(x + 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1 ------- + ----------- ___ _______ 2*\/ x 2*\/ x + 1 --------------------- ___ _______ \/ x + \/ x + 1
/ 2\ | / 1 1 \ | | |----- + ---------| | | | ___ _______| | | 1 1 \\/ x \/ 1 + x / | -|---- + ---------- + --------------------| | 3/2 3/2 ___ _______ | \x (1 + x) \/ x + \/ 1 + x / -------------------------------------------- / ___ _______\ 4*\\/ x + \/ 1 + x /
3 / 1 1 \ / 1 1 \ / 1 1 \ 2*|----- + ---------| 3*|---- + ----------|*|----- + ---------| | ___ _______| | 3/2 3/2| | ___ _______| 3 3 \\/ x \/ 1 + x / \x (1 + x) / \\/ x \/ 1 + x / ---- + ---------- + ---------------------- + ----------------------------------------- 5/2 5/2 2 ___ _______ x (1 + x) / ___ _______\ \/ x + \/ 1 + x \\/ x + \/ 1 + x / -------------------------------------------------------------------------------------- / ___ _______\ 8*\\/ x + \/ 1 + x /