Mister Exam

Derivative of ln(√x+√(x+1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /  ___     _______\
log\\/ x  + \/ x + 1 /
$$\log{\left(\sqrt{x} + \sqrt{x + 1} \right)}$$
log(sqrt(x) + sqrt(x + 1))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. Apply the power rule: goes to

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. Differentiate term by term:

          1. Apply the power rule: goes to

          2. The derivative of the constant is zero.

          The result is:

        The result of the chain rule is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
   1           1     
------- + -----------
    ___       _______
2*\/ x    2*\/ x + 1 
---------------------
    ___     _______  
  \/ x  + \/ x + 1   
$$\frac{\frac{1}{2 \sqrt{x + 1}} + \frac{1}{2 \sqrt{x}}}{\sqrt{x} + \sqrt{x + 1}}$$
The second derivative [src]
 /                                       2\ 
 |                    /  1         1    \ | 
 |                    |----- + ---------| | 
 |                    |  ___     _______| | 
 | 1         1        \\/ x    \/ 1 + x / | 
-|---- + ---------- + --------------------| 
 | 3/2          3/2      ___     _______  | 
 \x      (1 + x)       \/ x  + \/ 1 + x   / 
--------------------------------------------
             /  ___     _______\            
           4*\\/ x  + \/ 1 + x /            
$$- \frac{\frac{1}{\left(x + 1\right)^{\frac{3}{2}}} + \frac{\left(\frac{1}{\sqrt{x + 1}} + \frac{1}{\sqrt{x}}\right)^{2}}{\sqrt{x} + \sqrt{x + 1}} + \frac{1}{x^{\frac{3}{2}}}}{4 \left(\sqrt{x} + \sqrt{x + 1}\right)}$$
The third derivative [src]
                                         3                                            
                      /  1         1    \      / 1         1     \ /  1         1    \
                    2*|----- + ---------|    3*|---- + ----------|*|----- + ---------|
                      |  ___     _______|      | 3/2          3/2| |  ___     _______|
 3         3          \\/ x    \/ 1 + x /      \x      (1 + x)   / \\/ x    \/ 1 + x /
---- + ---------- + ---------------------- + -----------------------------------------
 5/2          5/2                       2                  ___     _______            
x      (1 + x)       /  ___     _______\                 \/ x  + \/ 1 + x             
                     \\/ x  + \/ 1 + x /                                              
--------------------------------------------------------------------------------------
                                  /  ___     _______\                                 
                                8*\\/ x  + \/ 1 + x /                                 
$$\frac{\frac{3}{\left(x + 1\right)^{\frac{5}{2}}} + \frac{3 \left(\frac{1}{\left(x + 1\right)^{\frac{3}{2}}} + \frac{1}{x^{\frac{3}{2}}}\right) \left(\frac{1}{\sqrt{x + 1}} + \frac{1}{\sqrt{x}}\right)}{\sqrt{x} + \sqrt{x + 1}} + \frac{2 \left(\frac{1}{\sqrt{x + 1}} + \frac{1}{\sqrt{x}}\right)^{3}}{\left(\sqrt{x} + \sqrt{x + 1}\right)^{2}} + \frac{3}{x^{\frac{5}{2}}}}{8 \left(\sqrt{x} + \sqrt{x + 1}\right)}$$