/ ___ _______\ log\\/ x + \/ x + 1 /
log(sqrt(x) + sqrt(x + 1))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
Apply the power rule: goes to
The derivative of the constant is zero.
The result is:
The result of the chain rule is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
1 1
------- + -----------
___ _______
2*\/ x 2*\/ x + 1
---------------------
___ _______
\/ x + \/ x + 1
/ 2\
| / 1 1 \ |
| |----- + ---------| |
| | ___ _______| |
| 1 1 \\/ x \/ 1 + x / |
-|---- + ---------- + --------------------|
| 3/2 3/2 ___ _______ |
\x (1 + x) \/ x + \/ 1 + x /
--------------------------------------------
/ ___ _______\
4*\\/ x + \/ 1 + x /
3
/ 1 1 \ / 1 1 \ / 1 1 \
2*|----- + ---------| 3*|---- + ----------|*|----- + ---------|
| ___ _______| | 3/2 3/2| | ___ _______|
3 3 \\/ x \/ 1 + x / \x (1 + x) / \\/ x \/ 1 + x /
---- + ---------- + ---------------------- + -----------------------------------------
5/2 5/2 2 ___ _______
x (1 + x) / ___ _______\ \/ x + \/ 1 + x
\\/ x + \/ 1 + x /
--------------------------------------------------------------------------------------
/ ___ _______\
8*\\/ x + \/ 1 + x /