Mister Exam

Derivative of √ln(x+√x+√x²+sin2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    ____________________________________
   /    /                 2           \ 
  /     |      ___     ___            | 
\/   log\x + \/ x  + \/ x   + sin(2*x)/ 
$$\sqrt{\log{\left(\left(\left(\sqrt{x}\right)^{2} + \left(\sqrt{x} + x\right)\right) + \sin{\left(2 x \right)} \right)}}$$
sqrt(log(x + sqrt(x) + (sqrt(x))^2 + sin(2*x)))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Differentiate term by term:

          1. Differentiate term by term:

            1. Apply the power rule: goes to

            2. Apply the power rule: goes to

            The result is:

          2. Let .

          3. Apply the power rule: goes to

          4. Then, apply the chain rule. Multiply by :

            1. Apply the power rule: goes to

            The result of the chain rule is:

          The result is:

        2. Let .

        3. The derivative of sine is cosine:

        4. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                              1                   x                       
                       1 + ------- + 2*cos(2*x) + -                       
                               ___                x                       
                           2*\/ x                                         
--------------------------------------------------------------------------
                                      ____________________________________
  /                 2           \    /    /                 2           \ 
  |      ___     ___            |   /     |      ___     ___            | 
2*\x + \/ x  + \/ x   + sin(2*x)/*\/   log\x + \/ x  + \/ x   + sin(2*x)/ 
$$\frac{2 \cos{\left(2 x \right)} + 1 + \frac{x}{x} + \frac{1}{2 \sqrt{x}}}{2 \left(\left(\left(\sqrt{x}\right)^{2} + \left(\sqrt{x} + x\right)\right) + \sin{\left(2 x \right)}\right) \sqrt{\log{\left(\left(\left(\sqrt{x}\right)^{2} + \left(\sqrt{x} + x\right)\right) + \sin{\left(2 x \right)} \right)}}}$$
The second derivative [src]
 /                                              2                                          2               \ 
 |                      /      1               \                   /      1               \                | 
 |                      |4 + ----- + 4*cos(2*x)|                   |4 + ----- + 4*cos(2*x)|                | 
 |                      |      ___             |                   |      ___             |                | 
 |  1                   \    \/ x              /                   \    \/ x              /                | 
-|------ + 8*sin(2*x) + -------------------------- + ------------------------------------------------------| 
 |   3/2                  /  ___                 \     /  ___                 \    /  ___                 \| 
 \2*x                   2*\\/ x  + 2*x + sin(2*x)/   4*\\/ x  + 2*x + sin(2*x)/*log\\/ x  + 2*x + sin(2*x)// 
-------------------------------------------------------------------------------------------------------------
                                                       _____________________________                         
                           /  ___                 \   /    /  ___                 \                          
                         4*\\/ x  + 2*x + sin(2*x)/*\/  log\\/ x  + 2*x + sin(2*x)/                          
$$- \frac{8 \sin{\left(2 x \right)} + \frac{\left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)^{2}}{2 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right)} + \frac{\left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)^{2}}{4 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right) \log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}} + \frac{1}{2 x^{\frac{3}{2}}}}{4 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right) \sqrt{\log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}}}$$
The third derivative [src]
                                                3                                                                                             3                                                         3                                                                        
                        /      1               \      / 1                \ /      1               \                   /      1               \                                  /      1               \                        / 1                \ /      1               \    
                        |4 + ----- + 4*cos(2*x)|    3*|---- + 16*sin(2*x)|*|4 + ----- + 4*cos(2*x)|                 3*|4 + ----- + 4*cos(2*x)|                                3*|4 + ----- + 4*cos(2*x)|                      3*|---- + 16*sin(2*x)|*|4 + ----- + 4*cos(2*x)|    
                        |      ___             |      | 3/2              | |      ___             |                   |      ___             |                                  |      ___             |                        | 3/2              | |      ___             |    
                 3      \    \/ x              /      \x                 / \    \/ x              /                   \    \/ x              /                                  \    \/ x              /                        \x                 / \    \/ x              /    
-32*cos(2*x) + ------ + ------------------------- + ----------------------------------------------- + ------------------------------------------------------- + -------------------------------------------------------- + ------------------------------------------------------
                  5/2                           2                /  ___                 \                                       2                                                         2                                  /  ___                 \    /  ___                 \
               2*x      /  ___                 \               2*\\/ x  + 2*x + sin(2*x)/               /  ___                 \     /  ___                 \     /  ___                 \     2/  ___                 \   4*\\/ x  + 2*x + sin(2*x)/*log\\/ x  + 2*x + sin(2*x)/
                        \\/ x  + 2*x + sin(2*x)/                                                      4*\\/ x  + 2*x + sin(2*x)/ *log\\/ x  + 2*x + sin(2*x)/   8*\\/ x  + 2*x + sin(2*x)/ *log \\/ x  + 2*x + sin(2*x)/                                                         
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                         _____________________________                                                                                                           
                                                                                                             /  ___                 \   /    /  ___                 \                                                                                                            
                                                                                                           8*\\/ x  + 2*x + sin(2*x)/*\/  log\\/ x  + 2*x + sin(2*x)/                                                                                                            
$$\frac{\frac{3 \left(16 \sin{\left(2 x \right)} + \frac{1}{x^{\frac{3}{2}}}\right) \left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)}{2 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right)} + \frac{3 \left(16 \sin{\left(2 x \right)} + \frac{1}{x^{\frac{3}{2}}}\right) \left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)}{4 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right) \log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}} - 32 \cos{\left(2 x \right)} + \frac{\left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)^{3}}{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right)^{2}} + \frac{3 \left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)^{3}}{4 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right)^{2} \log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}} + \frac{3 \left(4 \cos{\left(2 x \right)} + 4 + \frac{1}{\sqrt{x}}\right)^{3}}{8 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right)^{2} \log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}^{2}} + \frac{3}{2 x^{\frac{5}{2}}}}{8 \left(\sqrt{x} + 2 x + \sin{\left(2 x \right)}\right) \sqrt{\log{\left(\sqrt{x} + 2 x + \sin{\left(2 x \right)} \right)}}}$$