Mister Exam

Derivative of x*cos(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*cos(2*x)
xcos(2x)x \cos{\left(2 x \right)}
x*cos(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: 2xsin(2x)+cos(2x)- 2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}


The answer is:

2xsin(2x)+cos(2x)- 2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
-2*x*sin(2*x) + cos(2*x)
2xsin(2x)+cos(2x)- 2 x \sin{\left(2 x \right)} + \cos{\left(2 x \right)}
The second derivative [src]
-4*(x*cos(2*x) + sin(2*x))
4(xcos(2x)+sin(2x))- 4 \left(x \cos{\left(2 x \right)} + \sin{\left(2 x \right)}\right)
The third derivative [src]
4*(-3*cos(2*x) + 2*x*sin(2*x))
4(2xsin(2x)3cos(2x))4 \left(2 x \sin{\left(2 x \right)} - 3 \cos{\left(2 x \right)}\right)
The graph
Derivative of x*cos(2*x)