Mister Exam

Other calculators


sin(2*x)*cos(2*x)

Derivative of sin(2*x)*cos(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(2*x)*cos(2*x)
sin(2x)cos(2x)\sin{\left(2 x \right)} \cos{\left(2 x \right)}
sin(2*x)*cos(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(2x)f{\left(x \right)} = \sin{\left(2 x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2cos(2x)2 \cos{\left(2 x \right)}

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: 2sin2(2x)+2cos2(2x)- 2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}


The answer is:

2sin2(2x)+2cos2(2x)- 2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
       2             2     
- 2*sin (2*x) + 2*cos (2*x)
2sin2(2x)+2cos2(2x)- 2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}
The second derivative [src]
-16*cos(2*x)*sin(2*x)
16sin(2x)cos(2x)- 16 \sin{\left(2 x \right)} \cos{\left(2 x \right)}
The third derivative [src]
   /   2           2     \
32*\sin (2*x) - cos (2*x)/
32(sin2(2x)cos2(2x))32 \left(\sin^{2}{\left(2 x \right)} - \cos^{2}{\left(2 x \right)}\right)
The graph
Derivative of sin(2*x)*cos(2*x)