Mister Exam

Other calculators:


x*cos(2*x)

Limit of the function x*cos(2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
 lim  (x*cos(2*x))
x->-oo            
limx(xcos(2x))\lim_{x \to -\infty}\left(x \cos{\left(2 x \right)}\right)
Limit(x*cos(2*x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-2020
Rapid solution [src]
<-oo, oo>
,\left\langle -\infty, \infty\right\rangle
Other limits x→0, -oo, +oo, 1
limx(xcos(2x))=,\lim_{x \to -\infty}\left(x \cos{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
limx(xcos(2x))=,\lim_{x \to \infty}\left(x \cos{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
More at x→oo
limx0(xcos(2x))=0\lim_{x \to 0^-}\left(x \cos{\left(2 x \right)}\right) = 0
More at x→0 from the left
limx0+(xcos(2x))=0\lim_{x \to 0^+}\left(x \cos{\left(2 x \right)}\right) = 0
More at x→0 from the right
limx1(xcos(2x))=cos(2)\lim_{x \to 1^-}\left(x \cos{\left(2 x \right)}\right) = \cos{\left(2 \right)}
More at x→1 from the left
limx1+(xcos(2x))=cos(2)\lim_{x \to 1^+}\left(x \cos{\left(2 x \right)}\right) = \cos{\left(2 \right)}
More at x→1 from the right
The graph
Limit of the function x*cos(2*x)