Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (x-2*x^2+4*x^3)/(2*x+3*x^2)
Limit of (3+3*x^3+5*x+5*x^2)/(-1+x^2)
Limit of (3*x^3+12*x^2)/(x^2+7*x^3)
Limit of (-7+3*x^2+5*x)/(1+x+3*x^2)
Derivative of
:
x*cos(2*x)
Integral of d{x}
:
x*cos(2*x)
Identical expressions
x*cos(two *x)
x multiply by co sinus of e of (2 multiply by x)
x multiply by co sinus of e of (two multiply by x)
xcos(2x)
xcos2x
Similar expressions
atan(8*x)*cos(2*x)/sin(4*x)
Limit of the function
/
x*cos(2*x)
Limit of the function x*cos(2*x)
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
lim (x*cos(2*x)) x->-oo
lim
x
→
−
∞
(
x
cos
(
2
x
)
)
\lim_{x \to -\infty}\left(x \cos{\left(2 x \right)}\right)
x
→
−
∞
lim
(
x
cos
(
2
x
)
)
Limit(x*cos(2*x), x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-20
20
Plot the graph
Rapid solution
[src]
<-oo, oo>
⟨
−
∞
,
∞
⟩
\left\langle -\infty, \infty\right\rangle
⟨
−
∞
,
∞
⟩
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
(
x
cos
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to -\infty}\left(x \cos{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
x
→
−
∞
lim
(
x
cos
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
lim
x
→
∞
(
x
cos
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
\lim_{x \to \infty}\left(x \cos{\left(2 x \right)}\right) = \left\langle -\infty, \infty\right\rangle
x
→
∞
lim
(
x
cos
(
2
x
)
)
=
⟨
−
∞
,
∞
⟩
More at x→oo
lim
x
→
0
−
(
x
cos
(
2
x
)
)
=
0
\lim_{x \to 0^-}\left(x \cos{\left(2 x \right)}\right) = 0
x
→
0
−
lim
(
x
cos
(
2
x
)
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
cos
(
2
x
)
)
=
0
\lim_{x \to 0^+}\left(x \cos{\left(2 x \right)}\right) = 0
x
→
0
+
lim
(
x
cos
(
2
x
)
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
cos
(
2
x
)
)
=
cos
(
2
)
\lim_{x \to 1^-}\left(x \cos{\left(2 x \right)}\right) = \cos{\left(2 \right)}
x
→
1
−
lim
(
x
cos
(
2
x
)
)
=
cos
(
2
)
More at x→1 from the left
lim
x
→
1
+
(
x
cos
(
2
x
)
)
=
cos
(
2
)
\lim_{x \to 1^+}\left(x \cos{\left(2 x \right)}\right) = \cos{\left(2 \right)}
x
→
1
+
lim
(
x
cos
(
2
x
)
)
=
cos
(
2
)
More at x→1 from the right
The graph