Mister Exam

Derivative of y=sinxcos2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)*cos(2*x)
sin(x)cos(2x)\sin{\left(x \right)} \cos{\left(2 x \right)}
sin(x)*cos(2*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of sine is cosine:

      ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

    g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result is: 2sin(x)sin(2x)+cos(x)cos(2x)- 2 \sin{\left(x \right)} \sin{\left(2 x \right)} + \cos{\left(x \right)} \cos{\left(2 x \right)}

  2. Now simplify:

    cos(x)2+3cos(3x)2- \frac{\cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}


The answer is:

cos(x)2+3cos(3x)2- \frac{\cos{\left(x \right)}}{2} + \frac{3 \cos{\left(3 x \right)}}{2}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
cos(x)*cos(2*x) - 2*sin(x)*sin(2*x)
2sin(x)sin(2x)+cos(x)cos(2x)- 2 \sin{\left(x \right)} \sin{\left(2 x \right)} + \cos{\left(x \right)} \cos{\left(2 x \right)}
The second derivative [src]
-(4*cos(x)*sin(2*x) + 5*cos(2*x)*sin(x))
(5sin(x)cos(2x)+4sin(2x)cos(x))- (5 \sin{\left(x \right)} \cos{\left(2 x \right)} + 4 \sin{\left(2 x \right)} \cos{\left(x \right)})
The third derivative [src]
-13*cos(x)*cos(2*x) + 14*sin(x)*sin(2*x)
14sin(x)sin(2x)13cos(x)cos(2x)14 \sin{\left(x \right)} \sin{\left(2 x \right)} - 13 \cos{\left(x \right)} \cos{\left(2 x \right)}
The graph
Derivative of y=sinxcos2x