Mister Exam

Derivative of y=(x²+4)²(2x³-1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2           3
/ 2    \  /   3    \ 
\x  + 4/ *\2*x  - 1/ 
(x2+4)2(2x31)3\left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{3}
  /        2           3\
d |/ 2    \  /   3    \ |
--\\x  + 4/ *\2*x  - 1/ /
dx                       
ddx(x2+4)2(2x31)3\frac{d}{d x} \left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{3}
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=(x2+4)2f{\left(x \right)} = \left(x^{2} + 4\right)^{2}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=x2+4u = x^{2} + 4.

    2. Apply the power rule: u2u^{2} goes to 2u2 u

    3. Then, apply the chain rule. Multiply by ddx(x2+4)\frac{d}{d x} \left(x^{2} + 4\right):

      1. Differentiate x2+4x^{2} + 4 term by term:

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        2. The derivative of the constant 44 is zero.

        The result is: 2x2 x

      The result of the chain rule is:

      2x(2x2+8)2 x \left(2 x^{2} + 8\right)

    g(x)=(2x31)3g{\left(x \right)} = \left(2 x^{3} - 1\right)^{3}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=2x31u = 2 x^{3} - 1.

    2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

    3. Then, apply the chain rule. Multiply by ddx(2x31)\frac{d}{d x} \left(2 x^{3} - 1\right):

      1. Differentiate 2x312 x^{3} - 1 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

          So, the result is: 6x26 x^{2}

        2. The derivative of the constant (1)1\left(-1\right) 1 is zero.

        The result is: 6x26 x^{2}

      The result of the chain rule is:

      18x2(2x31)218 x^{2} \left(2 x^{3} - 1\right)^{2}

    The result is: 18x2(x2+4)2(2x31)2+2x(2x2+8)(2x31)318 x^{2} \left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{2} + 2 x \left(2 x^{2} + 8\right) \left(2 x^{3} - 1\right)^{3}

  2. Now simplify:

    2x(x2+4)(2x31)2(4x3+9x(x2+4)2)2 x \left(x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2} \cdot \left(4 x^{3} + 9 x \left(x^{2} + 4\right) - 2\right)


The answer is:

2x(x2+4)(2x31)2(4x3+9x(x2+4)2)2 x \left(x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2} \cdot \left(4 x^{3} + 9 x \left(x^{2} + 4\right) - 2\right)

The graph
02468-8-6-4-2-1010-200000000000000200000000000000
The first derivative [src]
              3                          2           2
    /   3    \  / 2    \       2 / 2    \  /   3    \ 
4*x*\2*x  - 1/ *\x  + 4/ + 18*x *\x  + 4/ *\2*x  - 1/ 
18x2(x2+4)2(2x31)2+4x(x2+4)(2x31)318 x^{2} \left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{2} + 4 x \left(x^{2} + 4\right) \left(2 x^{3} - 1\right)^{3}
The second derivative [src]
              /           2                          2                                         \
  /        3\ |/        3\  /       2\       /     2\  /        3\       3 /        3\ /     2\|
4*\-1 + 2*x /*\\-1 + 2*x / *\4 + 3*x / + 9*x*\4 + x / *\-1 + 8*x / + 36*x *\-1 + 2*x /*\4 + x //
4(2x31)(36x3(x2+4)(2x31)+9x(x2+4)2(8x31)+(3x2+4)(2x31)2)4 \cdot \left(2 x^{3} - 1\right) \left(36 x^{3} \left(x^{2} + 4\right) \left(2 x^{3} - 1\right) + 9 x \left(x^{2} + 4\right)^{2} \cdot \left(8 x^{3} - 1\right) + \left(3 x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2}\right)
The third derivative [src]
   /               3             2 /           2                            \                    2                                                    \
   |    /        3\      /     2\  |/        3\        6       3 /        3\|       2 /        3\  /       2\       2 /        3\ /        3\ /     2\|
12*\2*x*\-1 + 2*x /  + 3*\4 + x / *\\-1 + 2*x /  + 36*x  + 36*x *\-1 + 2*x // + 18*x *\-1 + 2*x / *\4 + 3*x / + 36*x *\-1 + 2*x /*\-1 + 8*x /*\4 + x //
12(36x2(x2+4)(2x31)(8x31)+18x2(3x2+4)(2x31)2+2x(2x31)3+3(x2+4)2(36x6+36x3(2x31)+(2x31)2))12 \cdot \left(36 x^{2} \left(x^{2} + 4\right) \left(2 x^{3} - 1\right) \left(8 x^{3} - 1\right) + 18 x^{2} \cdot \left(3 x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2} + 2 x \left(2 x^{3} - 1\right)^{3} + 3 \left(x^{2} + 4\right)^{2} \cdot \left(36 x^{6} + 36 x^{3} \cdot \left(2 x^{3} - 1\right) + \left(2 x^{3} - 1\right)^{2}\right)\right)
The graph
Derivative of y=(x²+4)²(2x³-1)³