Mister Exam

Derivative of y=(x²+4)²(2x³-1)³

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        2           3
/ 2    \  /   3    \ 
\x  + 4/ *\2*x  - 1/ 
$$\left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{3}$$
  /        2           3\
d |/ 2    \  /   3    \ |
--\\x  + 4/ *\2*x  - 1/ /
dx                       
$$\frac{d}{d x} \left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{3}$$
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. Apply the power rule: goes to

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of the constant is zero.

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              3                          2           2
    /   3    \  / 2    \       2 / 2    \  /   3    \ 
4*x*\2*x  - 1/ *\x  + 4/ + 18*x *\x  + 4/ *\2*x  - 1/ 
$$18 x^{2} \left(x^{2} + 4\right)^{2} \left(2 x^{3} - 1\right)^{2} + 4 x \left(x^{2} + 4\right) \left(2 x^{3} - 1\right)^{3}$$
The second derivative [src]
              /           2                          2                                         \
  /        3\ |/        3\  /       2\       /     2\  /        3\       3 /        3\ /     2\|
4*\-1 + 2*x /*\\-1 + 2*x / *\4 + 3*x / + 9*x*\4 + x / *\-1 + 8*x / + 36*x *\-1 + 2*x /*\4 + x //
$$4 \cdot \left(2 x^{3} - 1\right) \left(36 x^{3} \left(x^{2} + 4\right) \left(2 x^{3} - 1\right) + 9 x \left(x^{2} + 4\right)^{2} \cdot \left(8 x^{3} - 1\right) + \left(3 x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2}\right)$$
The third derivative [src]
   /               3             2 /           2                            \                    2                                                    \
   |    /        3\      /     2\  |/        3\        6       3 /        3\|       2 /        3\  /       2\       2 /        3\ /        3\ /     2\|
12*\2*x*\-1 + 2*x /  + 3*\4 + x / *\\-1 + 2*x /  + 36*x  + 36*x *\-1 + 2*x // + 18*x *\-1 + 2*x / *\4 + 3*x / + 36*x *\-1 + 2*x /*\-1 + 8*x /*\4 + x //
$$12 \cdot \left(36 x^{2} \left(x^{2} + 4\right) \left(2 x^{3} - 1\right) \left(8 x^{3} - 1\right) + 18 x^{2} \cdot \left(3 x^{2} + 4\right) \left(2 x^{3} - 1\right)^{2} + 2 x \left(2 x^{3} - 1\right)^{3} + 3 \left(x^{2} + 4\right)^{2} \cdot \left(36 x^{6} + 36 x^{3} \cdot \left(2 x^{3} - 1\right) + \left(2 x^{3} - 1\right)^{2}\right)\right)$$
The graph
Derivative of y=(x²+4)²(2x³-1)³