Detail solution
-
Apply the quotient rule, which is:
and .
To find :
-
Apply the power rule: goes to
To find :
-
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The answer is:
The first derivative
[src]
1 x*sin(x)
------ + --------
cos(x) 2
cos (x)
$$\frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{1}{\cos{\left(x \right)}}$$
The second derivative
[src]
/ 2 \
| 2*sin (x)| 2*sin(x)
x*|1 + ---------| + --------
| 2 | cos(x)
\ cos (x) /
----------------------------
cos(x)
$$\frac{x \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}}{\cos{\left(x \right)}}$$
The third derivative
[src]
/ 2 \
| 6*sin (x)|
x*|5 + ---------|*sin(x)
2 | 2 |
6*sin (x) \ cos (x) /
3 + --------- + ------------------------
2 cos(x)
cos (x)
----------------------------------------
cos(x)
$$\frac{\frac{x \left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 3}{\cos{\left(x \right)}}$$