Mister Exam

Derivative of x/cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x   
------
cos(x)
$$\frac{x}{\cos{\left(x \right)}}$$
x/cos(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. The derivative of cosine is negative sine:

    Now plug in to the quotient rule:


The answer is:

The graph
The first derivative [src]
  1      x*sin(x)
------ + --------
cos(x)      2    
         cos (x) 
$$\frac{x \sin{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{1}{\cos{\left(x \right)}}$$
The second derivative [src]
  /         2   \           
  |    2*sin (x)|   2*sin(x)
x*|1 + ---------| + --------
  |        2    |    cos(x) 
  \     cos (x) /           
----------------------------
           cos(x)           
$$\frac{x \left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) + \frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}}}{\cos{\left(x \right)}}$$
The third derivative [src]
                  /         2   \       
                  |    6*sin (x)|       
                x*|5 + ---------|*sin(x)
         2        |        2    |       
    6*sin (x)     \     cos (x) /       
3 + --------- + ------------------------
        2                cos(x)         
     cos (x)                            
----------------------------------------
                 cos(x)                 
$$\frac{\frac{x \left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin{\left(x \right)}}{\cos{\left(x \right)}} + \frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 3}{\cos{\left(x \right)}}$$
The graph
Derivative of x/cos(x)