Mister Exam

Derivative of sinx/cosx

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
sin(x)
------
cos(x)
$$\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}$$
sin(x)/cos(x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of sine is cosine:

    To find :

    1. The derivative of cosine is negative sine:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
       2   
    sin (x)
1 + -------
       2   
    cos (x)
$$\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1$$
The second derivative [src]
/         2   \       
|    2*sin (x)|       
|2 + ---------|*sin(x)
|        2    |       
\     cos (x) /       
----------------------
        cos(x)        
$$\frac{\left(\frac{2 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2\right) \sin{\left(x \right)}}{\cos{\left(x \right)}}$$
The third derivative [src]
                        /         2   \
                   2    |    6*sin (x)|
                sin (x)*|5 + ---------|
         2              |        2    |
    3*sin (x)           \     cos (x) /
2 + --------- + -----------------------
        2                  2           
     cos (x)            cos (x)        
$$\frac{\left(\frac{6 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 5\right) \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + \frac{3 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 2$$
The graph
Derivative of sinx/cosx