/ sin(x)\ log|1 + ------| \ cos(x)/
d / / sin(x)\\ --|log|1 + ------|| dx\ \ cos(x)//
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2
sin (x)
1 + -------
2
cos (x)
-----------
sin(x)
1 + ------
cos(x)
/ 2 \
| sin (x) |
| 1 + ------- |
/ 2 \ | 2 |
| sin (x)| | cos (x) 2*sin(x)|
|1 + -------|*|- ----------- + --------|
| 2 | | sin(x) cos(x) |
\ cos (x)/ | 1 + ------ |
\ cos(x) /
----------------------------------------
sin(x)
1 + ------
cos(x)
/ 3 2 \
| / 2 \ / 2 \ |
| | sin (x)| | sin (x)| |
| |1 + -------| 3*|1 + -------| *sin(x)|
| | 2 | 4 2 | 2 | |
| \ cos (x)/ 3*sin (x) 4*sin (x) \ cos (x)/ |
2*|1 + -------------- + --------- + --------- - -----------------------|
| 2 4 2 / sin(x)\ |
| / sin(x)\ cos (x) cos (x) |1 + ------|*cos(x) |
| |1 + ------| \ cos(x)/ |
\ \ cos(x)/ /
------------------------------------------------------------------------
sin(x)
1 + ------
cos(x)