Mister Exam

Derivative of ln(1+sinx/cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    sin(x)\
log|1 + ------|
   \    cos(x)/
$$\log{\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1 \right)}$$
d /   /    sin(x)\\
--|log|1 + ------||
dx\   \    cos(x)//
$$\frac{d}{d x} \log{\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1 \right)}$$
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the quotient rule, which is:

        and .

        To find :

        1. The derivative of sine is cosine:

        To find :

        1. The derivative of cosine is negative sine:

        Now plug in to the quotient rule:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       2   
    sin (x)
1 + -------
       2   
    cos (x)
-----------
     sin(x)
 1 + ------
     cos(x)
$$\frac{\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1}{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1}$$
The second derivative [src]
              /         2              \
              |      sin (x)           |
              |  1 + -------           |
/       2   \ |         2              |
|    sin (x)| |      cos (x)   2*sin(x)|
|1 + -------|*|- ----------- + --------|
|       2   | |       sin(x)    cos(x) |
\    cos (x)/ |   1 + ------           |
              \       cos(x)           /
----------------------------------------
                   sin(x)               
               1 + ------               
                   cos(x)               
$$\frac{\left(\frac{2 \sin{\left(x \right)}}{\cos{\left(x \right)}} - \frac{\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1}{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1}\right) \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)}{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1}$$
The third derivative [src]
  /                 3                                          2       \
  |    /       2   \                              /       2   \        |
  |    |    sin (x)|                              |    sin (x)|        |
  |    |1 + -------|                            3*|1 + -------| *sin(x)|
  |    |       2   |         4           2        |       2   |        |
  |    \    cos (x)/    3*sin (x)   4*sin (x)     \    cos (x)/        |
2*|1 + -------------- + --------- + --------- - -----------------------|
  |                2        4           2         /    sin(x)\         |
  |    /    sin(x)\      cos (x)     cos (x)      |1 + ------|*cos(x)  |
  |    |1 + ------|                               \    cos(x)/         |
  \    \    cos(x)/                                                    /
------------------------------------------------------------------------
                                   sin(x)                               
                               1 + ------                               
                                   cos(x)                               
$$\frac{2 \cdot \left(- \frac{3 \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)^{2} \sin{\left(x \right)}}{\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1\right) \cos{\left(x \right)}} + \frac{\left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)^{3}}{\left(\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1\right)^{2}} + \frac{3 \sin^{4}{\left(x \right)}}{\cos^{4}{\left(x \right)}} + \frac{4 \sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right)}{\frac{\sin{\left(x \right)}}{\cos{\left(x \right)}} + 1}$$
The graph
Derivative of ln(1+sinx/cosx)