/ sin(x)\ log|1 + ------| \ cos(x)/
d / / sin(x)\\ --|log|1 + ------|| dx\ \ cos(x)//
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
2 sin (x) 1 + ------- 2 cos (x) ----------- sin(x) 1 + ------ cos(x)
/ 2 \ | sin (x) | | 1 + ------- | / 2 \ | 2 | | sin (x)| | cos (x) 2*sin(x)| |1 + -------|*|- ----------- + --------| | 2 | | sin(x) cos(x) | \ cos (x)/ | 1 + ------ | \ cos(x) / ---------------------------------------- sin(x) 1 + ------ cos(x)
/ 3 2 \ | / 2 \ / 2 \ | | | sin (x)| | sin (x)| | | |1 + -------| 3*|1 + -------| *sin(x)| | | 2 | 4 2 | 2 | | | \ cos (x)/ 3*sin (x) 4*sin (x) \ cos (x)/ | 2*|1 + -------------- + --------- + --------- - -----------------------| | 2 4 2 / sin(x)\ | | / sin(x)\ cos (x) cos (x) |1 + ------|*cos(x) | | |1 + ------| \ cos(x)/ | \ \ cos(x)/ / ------------------------------------------------------------------------ sin(x) 1 + ------ cos(x)