/1 + sin(x)\ log|----------| \ cos(x) /
log((1 + sin(x))/cos(x))
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of sine is cosine:
The result is:
To find :
The derivative of cosine is negative sine:
Now plug in to the quotient rule:
The result of the chain rule is:
Now simplify:
The answer is:
/ (1 + sin(x))*sin(x)\ |1 + -------------------|*cos(x) | 2 | \ cos (x) / -------------------------------- 1 + sin(x)
2 / (1 + sin(x))*sin(x)\ cos (x)*|1 + -------------------| | 2 | 2 / (1 + sin(x))*sin(x)\ \ cos (x) / 2*sin (x)*(1 + sin(x)) 1 + 2*sin(x) - |1 + -------------------|*sin(x) - --------------------------------- + ---------------------- | 2 | 1 + sin(x) 2 \ cos (x) / cos (x) ------------------------------------------------------------------------------------------------------------ 1 + sin(x)
/ 2 \ / 2 \ | 2*sin (x)*(1 + sin(x))| | 2*sin (x)*(1 + sin(x))| 3 / (1 + sin(x))*sin(x)\ / (1 + sin(x))*sin(x)\ 2*|1 + 2*sin(x) + ----------------------|*cos(x) 2*|1 + 2*sin(x) + ----------------------|*sin(x) 2*cos (x)*|1 + -------------------| 3*|1 + -------------------|*cos(x)*sin(x) / 2 3 \ | 2 | | 2 | | 2 | | 2 | | 3*sin (x) 5*(1 + sin(x))*sin(x) 6*sin (x)*(1 + sin(x))| / (1 + sin(x))*sin(x)\ \ cos (x) / \ cos (x) / \ cos (x) / \ cos (x) / |2 + --------- + --------------------- + ----------------------|*cos(x) - |1 + -------------------|*cos(x) - ------------------------------------------------ - ------------------------------------------------ + ----------------------------------- + ----------------------------------------- | 2 2 4 | | 2 | 1 + sin(x) cos(x) 2 1 + sin(x) \ cos (x) cos (x) cos (x) / \ cos (x) / (1 + sin(x)) -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 1 + sin(x)