Mister Exam

Derivative of x²(√(1-x²))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      ________
 2   /      2 
x *\/  1 - x  
$$x^{2} \sqrt{1 - x^{2}}$$
x^2*sqrt(1 - x^2)
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        3              ________
       x              /      2 
- ----------- + 2*x*\/  1 - x  
     ________                  
    /      2                   
  \/  1 - x                    
$$- \frac{x^{3}}{\sqrt{1 - x^{2}}} + 2 x \sqrt{1 - x^{2}}$$
The second derivative [src]
                                 /         2  \
                               2 |        x   |
                              x *|-1 + -------|
     ________          2         |           2|
    /      2        4*x          \     -1 + x /
2*\/  1 - x   - ----------- + -----------------
                   ________         ________   
                  /      2         /      2    
                \/  1 - x        \/  1 - x     
$$\frac{x^{2} \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{\sqrt{1 - x^{2}}} - \frac{4 x^{2}}{\sqrt{1 - x^{2}}} + 2 \sqrt{1 - x^{2}}$$
The third derivative [src]
    /                  /         2  \\
    |                2 |        x   ||
    |               x *|-1 + -------||
    |          2       |           2||
    |       2*x        \     -1 + x /|
3*x*|-4 + ------- + -----------------|
    |           2              2     |
    \     -1 + x          1 - x      /
--------------------------------------
                ________              
               /      2               
             \/  1 - x                
$$\frac{3 x \left(\frac{2 x^{2}}{x^{2} - 1} + \frac{x^{2} \left(\frac{x^{2}}{x^{2} - 1} - 1\right)}{1 - x^{2}} - 4\right)}{\sqrt{1 - x^{2}}}$$