Mister Exam

Other calculators

Derivative of (3^x-ln(x))/(x-4)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x         
3  - log(x)
-----------
   x - 4   
$$\frac{3^{x} - \log{\left(x \right)}}{x - 4}$$
(3^x - log(x))/(x - 4)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of is .

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
  1    x                     
- - + 3 *log(3)    x         
  x               3  - log(x)
--------------- - -----------
     x - 4                 2 
                    (x - 4)  
$$- \frac{3^{x} - \log{\left(x \right)}}{\left(x - 4\right)^{2}} + \frac{3^{x} \log{\left(3 \right)} - \frac{1}{x}}{x - 4}$$
The second derivative [src]
                    /  1    x       \                  
                  2*|- - + 3 *log(3)|     / x         \
1     x    2        \  x            /   2*\3  - log(x)/
-- + 3 *log (3) - ------------------- + ---------------
 2                       -4 + x                    2   
x                                          (-4 + x)    
-------------------------------------------------------
                         -4 + x                        
$$\frac{3^{x} \log{\left(3 \right)}^{2} + \frac{2 \left(3^{x} - \log{\left(x \right)}\right)}{\left(x - 4\right)^{2}} - \frac{2 \left(3^{x} \log{\left(3 \right)} - \frac{1}{x}\right)}{x - 4} + \frac{1}{x^{2}}}{x - 4}$$
The third derivative [src]
                                        /1     x    2   \                      
                                      3*|-- + 3 *log (3)|     /  1    x       \
                      / x         \     | 2             |   6*|- - + 3 *log(3)|
  2     x    3      6*\3  - log(x)/     \x              /     \  x            /
- -- + 3 *log (3) - --------------- - ------------------- + -------------------
   3                           3             -4 + x                      2     
  x                    (-4 + x)                                  (-4 + x)      
-------------------------------------------------------------------------------
                                     -4 + x                                    
$$\frac{3^{x} \log{\left(3 \right)}^{3} - \frac{6 \left(3^{x} - \log{\left(x \right)}\right)}{\left(x - 4\right)^{3}} - \frac{3 \left(3^{x} \log{\left(3 \right)}^{2} + \frac{1}{x^{2}}\right)}{x - 4} + \frac{6 \left(3^{x} \log{\left(3 \right)} - \frac{1}{x}\right)}{\left(x - 4\right)^{2}} - \frac{2}{x^{3}}}{x - 4}$$