Mister Exam

Other calculators


x^2/(x-3)

Derivative of x^2/(x-3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2 
  x  
-----
x - 3
x2x3\frac{x^{2}}{x - 3}
x^2/(x - 3)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=x2f{\left(x \right)} = x^{2} and g(x)=x3g{\left(x \right)} = x - 3.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: x2x^{2} goes to 2x2 x

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x3x - 3 term by term:

      1. The derivative of the constant 3-3 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    x2+2x(x3)(x3)2\frac{- x^{2} + 2 x \left(x - 3\right)}{\left(x - 3\right)^{2}}

  2. Now simplify:

    x(x6)(x3)2\frac{x \left(x - 6\right)}{\left(x - 3\right)^{2}}


The answer is:

x(x6)(x3)2\frac{x \left(x - 6\right)}{\left(x - 3\right)^{2}}

The graph
02468-8-6-4-2-1010-20002000
The first derivative [src]
      2           
     x        2*x 
- -------- + -----
         2   x - 3
  (x - 3)         
x2(x3)2+2xx3- \frac{x^{2}}{\left(x - 3\right)^{2}} + \frac{2 x}{x - 3}
The second derivative [src]
  /         2            \
  |        x        2*x  |
2*|1 + --------- - ------|
  |            2   -3 + x|
  \    (-3 + x)          /
--------------------------
          -3 + x          
2(x2(x3)22xx3+1)x3\frac{2 \left(\frac{x^{2}}{\left(x - 3\right)^{2}} - \frac{2 x}{x - 3} + 1\right)}{x - 3}
The third derivative [src]
  /          2            \
  |         x        2*x  |
6*|-1 - --------- + ------|
  |             2   -3 + x|
  \     (-3 + x)          /
---------------------------
                 2         
         (-3 + x)          
6(x2(x3)2+2xx31)(x3)2\frac{6 \left(- \frac{x^{2}}{\left(x - 3\right)^{2}} + \frac{2 x}{x - 3} - 1\right)}{\left(x - 3\right)^{2}}
The graph
Derivative of x^2/(x-3)