Mister Exam

Other calculators


tan(2*x)/(1-cot(2*x))

Derivative of tan(2*x)/(1-cot(2*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  tan(2*x)  
------------
1 - cot(2*x)
tan(2x)1cot(2x)\frac{\tan{\left(2 x \right)}}{1 - \cot{\left(2 x \right)}}
tan(2*x)/(1 - cot(2*x))
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=tan(2x)f{\left(x \right)} = \tan{\left(2 x \right)} and g(x)=1cot(2x)g{\left(x \right)} = 1 - \cot{\left(2 x \right)}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Rewrite the function to be differentiated:

      tan(2x)=sin(2x)cos(2x)\tan{\left(2 x \right)} = \frac{\sin{\left(2 x \right)}}{\cos{\left(2 x \right)}}

    2. Apply the quotient rule, which is:

      ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

      f(x)=sin(2x)f{\left(x \right)} = \sin{\left(2 x \right)} and g(x)=cos(2x)g{\left(x \right)} = \cos{\left(2 x \right)}.

      To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2cos(2x)2 \cos{\left(2 x \right)}

      To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

      1. Let u=2xu = 2 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 22

        The result of the chain rule is:

        2sin(2x)- 2 \sin{\left(2 x \right)}

      Now plug in to the quotient rule:

      2sin2(2x)+2cos2(2x)cos2(2x)\frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)}}

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate 1cot(2x)1 - \cot{\left(2 x \right)} term by term:

      1. The derivative of the constant 11 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. There are multiple ways to do this derivative.

          Method #1

          1. Rewrite the function to be differentiated:

            cot(2x)=1tan(2x)\cot{\left(2 x \right)} = \frac{1}{\tan{\left(2 x \right)}}

          2. Let u=tan(2x)u = \tan{\left(2 x \right)}.

          3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

          4. Then, apply the chain rule. Multiply by ddxtan(2x)\frac{d}{d x} \tan{\left(2 x \right)}:

            1. Let u=2xu = 2 x.

            2. ddutan(u)=1cos2(u)\frac{d}{d u} \tan{\left(u \right)} = \frac{1}{\cos^{2}{\left(u \right)}}

            3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 22

              The result of the chain rule is:

              2cos2(2x)\frac{2}{\cos^{2}{\left(2 x \right)}}

            The result of the chain rule is:

            2sin2(2x)+2cos2(2x)cos2(2x)tan2(2x)- \frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)} \tan^{2}{\left(2 x \right)}}

          Method #2

          1. Rewrite the function to be differentiated:

            cot(2x)=cos(2x)sin(2x)\cot{\left(2 x \right)} = \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)}}

          2. Apply the quotient rule, which is:

            ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

            f(x)=cos(2x)f{\left(x \right)} = \cos{\left(2 x \right)} and g(x)=sin(2x)g{\left(x \right)} = \sin{\left(2 x \right)}.

            To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

            1. Let u=2xu = 2 x.

            2. The derivative of cosine is negative sine:

              dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 22

              The result of the chain rule is:

              2sin(2x)- 2 \sin{\left(2 x \right)}

            To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

            1. Let u=2xu = 2 x.

            2. The derivative of sine is cosine:

              ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

            3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 22

              The result of the chain rule is:

              2cos(2x)2 \cos{\left(2 x \right)}

            Now plug in to the quotient rule:

            2sin2(2x)2cos2(2x)sin2(2x)\frac{- 2 \sin^{2}{\left(2 x \right)} - 2 \cos^{2}{\left(2 x \right)}}{\sin^{2}{\left(2 x \right)}}

        So, the result is: 2sin2(2x)+2cos2(2x)cos2(2x)tan2(2x)\frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)} \tan^{2}{\left(2 x \right)}}

      The result is: 2sin2(2x)+2cos2(2x)cos2(2x)tan2(2x)\frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)} \tan^{2}{\left(2 x \right)}}

    Now plug in to the quotient rule:

    (1cot(2x))(2sin2(2x)+2cos2(2x))cos2(2x)2sin2(2x)+2cos2(2x)cos2(2x)tan(2x)(1cot(2x))2\frac{\frac{\left(1 - \cot{\left(2 x \right)}\right) \left(2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}\right)}{\cos^{2}{\left(2 x \right)}} - \frac{2 \sin^{2}{\left(2 x \right)} + 2 \cos^{2}{\left(2 x \right)}}{\cos^{2}{\left(2 x \right)} \tan{\left(2 x \right)}}}{\left(1 - \cot{\left(2 x \right)}\right)^{2}}

  2. Now simplify:

    2(tan(2x)2)(cot(2x)1)2cos2(2x)tan(2x)\frac{2 \left(\tan{\left(2 x \right)} - 2\right)}{\left(\cot{\left(2 x \right)} - 1\right)^{2} \cos^{2}{\left(2 x \right)} \tan{\left(2 x \right)}}


The answer is:

2(tan(2x)2)(cot(2x)1)2cos2(2x)tan(2x)\frac{2 \left(\tan{\left(2 x \right)} - 2\right)}{\left(\cot{\left(2 x \right)} - 1\right)^{2} \cos^{2}{\left(2 x \right)} \tan{\left(2 x \right)}}

The graph
02468-8-6-4-2-1010-250000250000
The first derivative [src]
         2        /          2     \         
2 + 2*tan (2*x)   \-2 - 2*cot (2*x)/*tan(2*x)
--------------- + ---------------------------
  1 - cot(2*x)                        2      
                        (1 - cot(2*x))       
2tan2(2x)+21cot(2x)+(2cot2(2x)2)tan(2x)(1cot(2x))2\frac{2 \tan^{2}{\left(2 x \right)} + 2}{1 - \cot{\left(2 x \right)}} + \frac{\left(- 2 \cot^{2}{\left(2 x \right)} - 2\right) \tan{\left(2 x \right)}}{\left(1 - \cot{\left(2 x \right)}\right)^{2}}
The second derivative [src]
  /                                                                               /         2                \         \
  |                                                               /       2     \ |  1 + cot (2*x)           |         |
  |                             /       2     \ /       2     \   \1 + cot (2*x)/*|- ------------- + cot(2*x)|*tan(2*x)|
  |  /       2     \            \1 + cot (2*x)/*\1 + tan (2*x)/                   \  -1 + cot(2*x)           /         |
8*|- \1 + tan (2*x)/*tan(2*x) - ------------------------------- + -----------------------------------------------------|
  \                                      -1 + cot(2*x)                                -1 + cot(2*x)                    /
------------------------------------------------------------------------------------------------------------------------
                                                     -1 + cot(2*x)                                                      
8((tan2(2x)+1)tan(2x)(tan2(2x)+1)(cot2(2x)+1)cot(2x)1+(cot(2x)cot2(2x)+1cot(2x)1)(cot2(2x)+1)tan(2x)cot(2x)1)cot(2x)1\frac{8 \left(- \left(\tan^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)} - \frac{\left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)} - 1} + \frac{\left(\cot{\left(2 x \right)} - \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot{\left(2 x \right)} - 1}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1}\right)}{\cot{\left(2 x \right)} - 1}
The third derivative [src]
   /                                                      /                                   2                             \                                                                                                                       \
   |                                                      |                    /       2     \      /       2     \         |                                                                                                                       |
   |                                      /       2     \ |         2        3*\1 + cot (2*x)/    6*\1 + cot (2*x)/*cot(2*x)|                                                                                           /         2                \|
   |                                      \1 + cot (2*x)/*|1 + 3*cot (2*x) + ------------------ - --------------------------|*tan(2*x)                                                  /       2     \ /       2     \ |  1 + cot (2*x)           ||
   |                                                      |                                  2          -1 + cot(2*x)       |              /       2     \ /       2     \            3*\1 + cot (2*x)/*\1 + tan (2*x)/*|- ------------- + cot(2*x)||
   |  /       2     \ /         2     \                   \                   (-1 + cot(2*x))                               /            3*\1 + cot (2*x)/*\1 + tan (2*x)/*tan(2*x)                                     \  -1 + cot(2*x)           /|
16*|- \1 + tan (2*x)/*\1 + 3*tan (2*x)/ - -------------------------------------------------------------------------------------------- - ------------------------------------------ + --------------------------------------------------------------|
   \                                                                             -1 + cot(2*x)                                                         -1 + cot(2*x)                                          -1 + cot(2*x)                         /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                    -1 + cot(2*x)                                                                                                                    
16((tan2(2x)+1)(3tan2(2x)+1)+3(tan2(2x)+1)(cot(2x)cot2(2x)+1cot(2x)1)(cot2(2x)+1)cot(2x)13(tan2(2x)+1)(cot2(2x)+1)tan(2x)cot(2x)1(cot2(2x)+1)(3cot2(2x)+16(cot2(2x)+1)cot(2x)cot(2x)1+3(cot2(2x)+1)2(cot(2x)1)2)tan(2x)cot(2x)1)cot(2x)1\frac{16 \left(- \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(3 \tan^{2}{\left(2 x \right)} + 1\right) + \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot{\left(2 x \right)} - \frac{\cot^{2}{\left(2 x \right)} + 1}{\cot{\left(2 x \right)} - 1}\right) \left(\cot^{2}{\left(2 x \right)} + 1\right)}{\cot{\left(2 x \right)} - 1} - \frac{3 \left(\tan^{2}{\left(2 x \right)} + 1\right) \left(\cot^{2}{\left(2 x \right)} + 1\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1} - \frac{\left(\cot^{2}{\left(2 x \right)} + 1\right) \left(3 \cot^{2}{\left(2 x \right)} + 1 - \frac{6 \left(\cot^{2}{\left(2 x \right)} + 1\right) \cot{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1} + \frac{3 \left(\cot^{2}{\left(2 x \right)} + 1\right)^{2}}{\left(\cot{\left(2 x \right)} - 1\right)^{2}}\right) \tan{\left(2 x \right)}}{\cot{\left(2 x \right)} - 1}\right)}{\cot{\left(2 x \right)} - 1}
The graph
Derivative of tan(2*x)/(1-cot(2*x))