Mister Exam

Derivative of (3-x)*exp(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         x
(3 - x)*e 
(3x)ex\left(3 - x\right) e^{x}
(3 - x)*exp(x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=3xf{\left(x \right)} = 3 - x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 3x3 - x term by term:

      1. The derivative of the constant 33 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 1-1

    g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    The result is: (3x)exex\left(3 - x\right) e^{x} - e^{x}

  2. Now simplify:

    (2x)ex\left(2 - x\right) e^{x}


The answer is:

(2x)ex\left(2 - x\right) e^{x}

The graph
02468-8-6-4-2-1010-200000200000
The first derivative [src]
   x            x
- e  + (3 - x)*e 
(3x)exex\left(3 - x\right) e^{x} - e^{x}
The second derivative [src]
           x
-(-1 + x)*e 
(x1)ex- \left(x - 1\right) e^{x}
The third derivative [src]
    x
-x*e 
xex- x e^{x}