Mister Exam

Other calculators

Derivative of (2x^3-x)*exp^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
/   3    \  x
\2*x  - x/*E 
ex(2x3x)e^{x} \left(2 x^{3} - x\right)
(2*x^3 - x)*E^x
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2x3xf{\left(x \right)} = 2 x^{3} - x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2x3x2 x^{3} - x term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

        So, the result is: 6x26 x^{2}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      The result is: 6x216 x^{2} - 1

    g(x)=exg{\left(x \right)} = e^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. The derivative of exe^{x} is itself.

    The result is: (6x21)ex+(2x3x)ex\left(6 x^{2} - 1\right) e^{x} + \left(2 x^{3} - x\right) e^{x}

  2. Now simplify:

    (2x3+6x2x1)ex\left(2 x^{3} + 6 x^{2} - x - 1\right) e^{x}


The answer is:

(2x3+6x2x1)ex\left(2 x^{3} + 6 x^{2} - x - 1\right) e^{x}

The graph
02468-8-6-4-2-1010-50000000100000000
The first derivative [src]
/        2\  x   /   3    \  x
\-1 + 6*x /*e  + \2*x  - x/*e 
(6x21)ex+(2x3x)ex\left(6 x^{2} - 1\right) e^{x} + \left(2 x^{3} - x\right) e^{x}
The second derivative [src]
/                2     /        2\\  x
\-2 + 12*x + 12*x  + x*\-1 + 2*x //*e 
(12x2+x(2x21)+12x2)ex\left(12 x^{2} + x \left(2 x^{2} - 1\right) + 12 x - 2\right) e^{x}
The third derivative [src]
/        2            /        2\\  x
\9 + 18*x  + 36*x + x*\-1 + 2*x //*e 
(18x2+x(2x21)+36x+9)ex\left(18 x^{2} + x \left(2 x^{2} - 1\right) + 36 x + 9\right) e^{x}