Mister Exam

Other calculators

Integral of (3-x)*exp(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1              
  /              
 |               
 |           x   
 |  (3 - x)*e  dx
 |               
/                
0                
01(3x)exdx\int\limits_{0}^{1} \left(3 - x\right) e^{x}\, dx
Integral((3 - x)*exp(x), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=xu = - x.

      Then let du=dxdu = - dx and substitute du- du:

      ((u+3)eu)du\int \left(- \left(u + 3\right) e^{- u}\right)\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        (u+3)eudu=(u+3)eudu\int \left(u + 3\right) e^{- u}\, du = - \int \left(u + 3\right) e^{- u}\, du

        1. Let u=uu = - u.

          Then let du=dudu = - du and substitute dudu:

          (ueu3eu)du\int \left(u e^{u} - 3 e^{u}\right)\, du

          1. Integrate term-by-term:

            1. Use integration by parts:

              udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

              Let u(u)=uu{\left(u \right)} = u and let dv(u)=eu\operatorname{dv}{\left(u \right)} = e^{u}.

              Then du(u)=1\operatorname{du}{\left(u \right)} = 1.

              To find v(u)v{\left(u \right)}:

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              Now evaluate the sub-integral.

            2. The integral of the exponential function is itself.

              eudu=eu\int e^{u}\, du = e^{u}

            1. The integral of a constant times a function is the constant times the integral of the function:

              (3eu)du=3eudu\int \left(- 3 e^{u}\right)\, du = - 3 \int e^{u}\, du

              1. The integral of the exponential function is itself.

                eudu=eu\int e^{u}\, du = e^{u}

              So, the result is: 3eu- 3 e^{u}

            The result is: ueu4euu e^{u} - 4 e^{u}

          Now substitute uu back in:

          ueu4eu- u e^{- u} - 4 e^{- u}

        So, the result is: ueu+4euu e^{- u} + 4 e^{- u}

      Now substitute uu back in:

      xex+4ex- x e^{x} + 4 e^{x}

    Method #2

    1. Rewrite the integrand:

      (3x)ex=xex+3ex\left(3 - x\right) e^{x} = - x e^{x} + 3 e^{x}

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        (xex)dx=xexdx\int \left(- x e^{x}\right)\, dx = - \int x e^{x}\, dx

        1. Use integration by parts:

          udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

          Let u(x)=xu{\left(x \right)} = x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

          Then du(x)=1\operatorname{du}{\left(x \right)} = 1.

          To find v(x)v{\left(x \right)}:

          1. The integral of the exponential function is itself.

            exdx=ex\int e^{x}\, dx = e^{x}

          Now evaluate the sub-integral.

        2. The integral of the exponential function is itself.

          exdx=ex\int e^{x}\, dx = e^{x}

        So, the result is: xex+ex- x e^{x} + e^{x}

      1. The integral of a constant times a function is the constant times the integral of the function:

        3exdx=3exdx\int 3 e^{x}\, dx = 3 \int e^{x}\, dx

        1. The integral of the exponential function is itself.

          exdx=ex\int e^{x}\, dx = e^{x}

        So, the result is: 3ex3 e^{x}

      The result is: xex+4ex- x e^{x} + 4 e^{x}

    Method #3

    1. Use integration by parts:

      udv=uvvdu\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}

      Let u(x)=3xu{\left(x \right)} = 3 - x and let dv(x)=ex\operatorname{dv}{\left(x \right)} = e^{x}.

      Then du(x)=1\operatorname{du}{\left(x \right)} = -1.

      To find v(x)v{\left(x \right)}:

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      (ex)dx=exdx\int \left(- e^{x}\right)\, dx = - \int e^{x}\, dx

      1. The integral of the exponential function is itself.

        exdx=ex\int e^{x}\, dx = e^{x}

      So, the result is: ex- e^{x}

  2. Now simplify:

    (4x)ex\left(4 - x\right) e^{x}

  3. Add the constant of integration:

    (4x)ex+constant\left(4 - x\right) e^{x}+ \mathrm{constant}


The answer is:

(4x)ex+constant\left(4 - x\right) e^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                               
 |                                
 |          x             x      x
 | (3 - x)*e  dx = C + 4*e  - x*e 
 |                                
/                                 
(3x)exdx=Cxex+4ex\int \left(3 - x\right) e^{x}\, dx = C - x e^{x} + 4 e^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.90010
The answer [src]
-4 + 3*E
4+3e-4 + 3 e
=
=
-4 + 3*E
4+3e-4 + 3 e
-4 + 3*E
Numerical answer [src]
4.15484548537714
4.15484548537714

    Use the examples entering the upper and lower limits of integration.