Mister Exam

Other calculators


2^x*cos(x)

Derivative of 2^x*cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 x       
2 *cos(x)
$$2^{x} \cos{\left(x \right)}$$
2^x*cos(x)
Detail solution
  1. Apply the product rule:

    ; to find :

    ; to find :

    1. The derivative of cosine is negative sine:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   x           x              
- 2 *sin(x) + 2 *cos(x)*log(2)
$$- 2^{x} \sin{\left(x \right)} + 2^{x} \log{\left(2 \right)} \cos{\left(x \right)}$$
The second derivative [src]
 x /             2                            \
2 *\-cos(x) + log (2)*cos(x) - 2*log(2)*sin(x)/
$$2^{x} \left(- 2 \log{\left(2 \right)} \sin{\left(x \right)} - \cos{\left(x \right)} + \log{\left(2 \right)}^{2} \cos{\left(x \right)}\right)$$
The third derivative [src]
 x /   3                  2                                     \
2 *\log (2)*cos(x) - 3*log (2)*sin(x) - 3*cos(x)*log(2) + sin(x)/
$$2^{x} \left(- 3 \log{\left(2 \right)}^{2} \sin{\left(x \right)} + \sin{\left(x \right)} - 3 \log{\left(2 \right)} \cos{\left(x \right)} + \log{\left(2 \right)}^{3} \cos{\left(x \right)}\right)$$
The graph
Derivative of 2^x*cos(x)