Mister Exam

Other calculators

Derivative of e^(sin(x)-2*x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
             3
 sin(x) - 2*x 
E             
$$e^{- 2 x^{3} + \sin{\left(x \right)}}$$
E^(sin(x) - 2*x^3)
Detail solution
  1. Let .

  2. The derivative of is itself.

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of sine is cosine:

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The first derivative [src]
                               3
/     2         \  sin(x) - 2*x 
\- 6*x  + cos(x)/*e             
$$\left(- 6 x^{2} + \cos{\left(x \right)}\right) e^{- 2 x^{3} + \sin{\left(x \right)}}$$
The second derivative [src]
/                2                \       3         
|/             2\                 |  - 2*x  + sin(x)
\\-cos(x) + 6*x /  - sin(x) - 12*x/*e               
$$\left(- 12 x + \left(6 x^{2} - \cos{\left(x \right)}\right)^{2} - \sin{\left(x \right)}\right) e^{- 2 x^{3} + \sin{\left(x \right)}}$$
The third derivative [src]
/                      3                                              \       3         
|      /             2\               /             2\                |  - 2*x  + sin(x)
\-12 - \-cos(x) + 6*x /  - cos(x) + 3*\-cos(x) + 6*x /*(12*x + sin(x))/*e               
$$\left(3 \left(12 x + \sin{\left(x \right)}\right) \left(6 x^{2} - \cos{\left(x \right)}\right) - \left(6 x^{2} - \cos{\left(x \right)}\right)^{3} - \cos{\left(x \right)} - 12\right) e^{- 2 x^{3} + \sin{\left(x \right)}}$$