3 ___ \/ x
(sqrt(x))^3
Let u=xu = \sqrt{x}u=x.
Apply the power rule: u3u^{3}u3 goes to 3u23 u^{2}3u2
Then, apply the chain rule. Multiply by ddxx\frac{d}{d x} \sqrt{x}dxdx:
Apply the power rule: x\sqrt{x}x goes to 12x\frac{1}{2 \sqrt{x}}2x1
The result of the chain rule is:
The answer is:
3/2 3*x ------ 2*x
3 ------- ___ 4*\/ x
-3 ------ 3/2 8*x