Integral of sqrt^3(x) dx
The solution
Detail solution
-
Let u=x.
Then let du=2xdx and substitute 2du:
∫2u4du
-
The integral of a constant times a function is the constant times the integral of the function:
∫u4du=2∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
So, the result is: 52u5
Now substitute u back in:
52x25
-
Add the constant of integration:
52x25+constant
The answer is:
52x25+constant
The answer (Indefinite)
[src]
/
|
| 3 5/2
| ___ 2*x
| \/ x dx = C + ------
| 5
/
∫(x)3dx=C+52x25
The graph
___
2 256*\/ 2
- - + ---------
5 5
−52+52562
=
___
2 256*\/ 2
- - + ---------
5 5
−52+52562
Use the examples entering the upper and lower limits of integration.