Mister Exam

Other calculators

Integral of sqrt^3(x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  8          
  /          
 |           
 |       3   
 |    ___    
 |  \/ x   dx
 |           
/            
1            
18(x)3dx\int\limits_{1}^{8} \left(\sqrt{x}\right)^{3}\, dx
Integral((sqrt(x))^3, (x, 1, 8))
Detail solution
  1. Let u=xu = \sqrt{x}.

    Then let du=dx2xdu = \frac{dx}{2 \sqrt{x}} and substitute 2du2 du:

    2u4du\int 2 u^{4}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      u4du=2u4du\int u^{4}\, du = 2 \int u^{4}\, du

      1. The integral of unu^{n} is un+1n+1\frac{u^{n + 1}}{n + 1} when n1n \neq -1:

        u4du=u55\int u^{4}\, du = \frac{u^{5}}{5}

      So, the result is: 2u55\frac{2 u^{5}}{5}

    Now substitute uu back in:

    2x525\frac{2 x^{\frac{5}{2}}}{5}

  2. Add the constant of integration:

    2x525+constant\frac{2 x^{\frac{5}{2}}}{5}+ \mathrm{constant}


The answer is:

2x525+constant\frac{2 x^{\frac{5}{2}}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                      
 |                       
 |      3             5/2
 |   ___           2*x   
 | \/ x   dx = C + ------
 |                   5   
/                        
(x)3dx=C+2x525\int \left(\sqrt{x}\right)^{3}\, dx = C + \frac{2 x^{\frac{5}{2}}}{5}
The graph
1.08.01.52.02.53.03.54.04.55.05.56.06.57.07.50100
The answer [src]
            ___
  2   256*\/ 2 
- - + ---------
  5       5    
25+25625- \frac{2}{5} + \frac{256 \sqrt{2}}{5}
=
=
            ___
  2   256*\/ 2 
- - + ---------
  5       5    
25+25625- \frac{2}{5} + \frac{256 \sqrt{2}}{5}
-2/5 + 256*sqrt(2)/5
Numerical answer [src]
72.0077343935025
72.0077343935025

    Use the examples entering the upper and lower limits of integration.