sin(x) ---------- 1 + cos(x)
sin(x)/(1 + cos(x))
Apply the quotient rule, which is:
and .
To find :
The derivative of sine is cosine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of cosine is negative sine:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
cos(x) sin (x)
---------- + -------------
1 + cos(x) 2
(1 + cos(x))
/ 2 \
| 2*sin (x) |
| ---------- + cos(x) |
| 1 + cos(x) 2*cos(x) |
|-1 + ------------------- + ----------|*sin(x)
\ 1 + cos(x) 1 + cos(x)/
----------------------------------------------
1 + cos(x)
/ 2 \
2 | 6*cos(x) 6*sin (x) | / 2 \
sin (x)*|-1 + ---------- + -------------| |2*sin (x) |
2 | 1 + cos(x) 2| 3*|---------- + cos(x)|*cos(x)
3*sin (x) \ (1 + cos(x)) / \1 + cos(x) /
-cos(x) - ---------- + ----------------------------------------- + ------------------------------
1 + cos(x) 1 + cos(x) 1 + cos(x)
-------------------------------------------------------------------------------------------------
1 + cos(x)