Mister Exam

Derivative of sqrt(3*x+1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  _________
\/ 3*x + 1 
3x+1\sqrt{3 x + 1}
sqrt(3*x + 1)
Detail solution
  1. Let u=3x+1u = 3 x + 1.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddx(3x+1)\frac{d}{d x} \left(3 x + 1\right):

    1. Differentiate 3x+13 x + 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 33

      2. The derivative of the constant 11 is zero.

      The result is: 33

    The result of the chain rule is:

    323x+1\frac{3}{2 \sqrt{3 x + 1}}

  4. Now simplify:

    323x+1\frac{3}{2 \sqrt{3 x + 1}}


The answer is:

323x+1\frac{3}{2 \sqrt{3 x + 1}}

The graph
02468-8-6-4-2-1010010
The first derivative [src]
      3      
-------------
    _________
2*\/ 3*x + 1 
323x+1\frac{3}{2 \sqrt{3 x + 1}}
The second derivative [src]
     -9       
--------------
           3/2
4*(1 + 3*x)   
94(3x+1)32- \frac{9}{4 \left(3 x + 1\right)^{\frac{3}{2}}}
The third derivative [src]
      81      
--------------
           5/2
8*(1 + 3*x)   
818(3x+1)52\frac{81}{8 \left(3 x + 1\right)^{\frac{5}{2}}}
3-я производная [src]
      81      
--------------
           5/2
8*(1 + 3*x)   
818(3x+1)52\frac{81}{8 \left(3 x + 1\right)^{\frac{5}{2}}}