Mister Exam

Other calculators

Derivative of sqrt(sin(5*x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________
\/ sin(5*x) 
sin(5x)\sqrt{\sin{\left(5 x \right)}}
sqrt(sin(5*x))
Detail solution
  1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

  2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

  3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

    1. Let u=5xu = 5 x.

    2. The derivative of sine is cosine:

      ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 55

      The result of the chain rule is:

      5cos(5x)5 \cos{\left(5 x \right)}

    The result of the chain rule is:

    5cos(5x)2sin(5x)\frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}


The answer is:

5cos(5x)2sin(5x)\frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}

The graph
02468-8-6-4-2-1010-2525
The first derivative [src]
  5*cos(5*x)  
--------------
    __________
2*\/ sin(5*x) 
5cos(5x)2sin(5x)\frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}
The second derivative [src]
    /                     2      \
    |    __________    cos (5*x) |
-25*|2*\/ sin(5*x)  + -----------|
    |                    3/2     |
    \                 sin   (5*x)/
----------------------------------
                4                 
25(2sin(5x)+cos2(5x)sin32(5x))4- \frac{25 \left(2 \sqrt{\sin{\left(5 x \right)}} + \frac{\cos^{2}{\left(5 x \right)}}{\sin^{\frac{3}{2}}{\left(5 x \right)}}\right)}{4}
The third derivative [src]
    /         2     \         
    |    3*cos (5*x)|         
125*|2 + -----------|*cos(5*x)
    |        2      |         
    \     sin (5*x) /         
------------------------------
            __________        
        8*\/ sin(5*x)         
125(2+3cos2(5x)sin2(5x))cos(5x)8sin(5x)\frac{125 \left(2 + \frac{3 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{8 \sqrt{\sin{\left(5 x \right)}}}