Mister Exam

Derivative of ln(cos(x))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
log(cos(x))
log(cos(x))\log{\left(\cos{\left(x \right)} \right)}
d              
--(log(cos(x)))
dx             
ddxlog(cos(x))\frac{d}{d x} \log{\left(\cos{\left(x \right)} \right)}
Detail solution
  1. Let u=cos(x)u = \cos{\left(x \right)}.

  2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

  3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

    1. The derivative of cosine is negative sine:

      ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

    The result of the chain rule is:

    sin(x)cos(x)- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

  4. Now simplify:

    tan(x)- \tan{\left(x \right)}


The answer is:

tan(x)- \tan{\left(x \right)}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
-sin(x) 
--------
 cos(x) 
sin(x)cos(x)- \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}
The second derivative [src]
 /       2   \
 |    sin (x)|
-|1 + -------|
 |       2   |
 \    cos (x)/
(sin2(x)cos2(x)+1)- (\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1)
The third derivative [src]
   /       2   \       
   |    sin (x)|       
-2*|1 + -------|*sin(x)
   |       2   |       
   \    cos (x)/       
-----------------------
         cos(x)        
2(sin2(x)cos2(x)+1)sin(x)cos(x)- \frac{2 \left(\frac{\sin^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}} + 1\right) \sin{\left(x \right)}}{\cos{\left(x \right)}}
The graph
Derivative of ln(cos(x))