Mister Exam

Derivative of 1/sqrtsin5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
  __________
\/ sin(5*x) 
$$\frac{1}{\sqrt{\sin{\left(5 x \right)}}}$$
1/(sqrt(sin(5*x)))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Let .

      2. The derivative of sine is cosine:

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result of the chain rule is:

      The result of the chain rule is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
      -5*cos(5*x)      
-----------------------
             __________
2*sin(5*x)*\/ sin(5*x) 
$$- \frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}} \sin{\left(5 x \right)}}$$
The second derivative [src]
   /         2     \
   |    3*cos (5*x)|
25*|2 + -----------|
   |        2      |
   \     sin (5*x) /
--------------------
       __________   
   4*\/ sin(5*x)    
$$\frac{25 \left(2 + \frac{3 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right)}{4 \sqrt{\sin{\left(5 x \right)}}}$$
The third derivative [src]
     /           2     \         
     |     15*cos (5*x)|         
-125*|14 + ------------|*cos(5*x)
     |         2       |         
     \      sin (5*x)  /         
---------------------------------
               3/2               
          8*sin   (5*x)          
$$- \frac{125 \left(14 + \frac{15 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{8 \sin^{\frac{3}{2}}{\left(5 x \right)}}$$