Mister Exam

Derivative of 1/sqrtsin5x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     1      
------------
  __________
\/ sin(5*x) 
1sin(5x)\frac{1}{\sqrt{\sin{\left(5 x \right)}}}
1/(sqrt(sin(5*x)))
Detail solution
  1. Let u=sin(5x)u = \sqrt{\sin{\left(5 x \right)}}.

  2. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

  3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sqrt{\sin{\left(5 x \right)}}:

    1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5cos(5x)5 \cos{\left(5 x \right)}

      The result of the chain rule is:

      5cos(5x)2sin(5x)\frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}

    The result of the chain rule is:

    5cos(5x)2sin32(5x)- \frac{5 \cos{\left(5 x \right)}}{2 \sin^{\frac{3}{2}}{\left(5 x \right)}}


The answer is:

5cos(5x)2sin32(5x)- \frac{5 \cos{\left(5 x \right)}}{2 \sin^{\frac{3}{2}}{\left(5 x \right)}}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
      -5*cos(5*x)      
-----------------------
             __________
2*sin(5*x)*\/ sin(5*x) 
5cos(5x)2sin(5x)sin(5x)- \frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}} \sin{\left(5 x \right)}}
The second derivative [src]
   /         2     \
   |    3*cos (5*x)|
25*|2 + -----------|
   |        2      |
   \     sin (5*x) /
--------------------
       __________   
   4*\/ sin(5*x)    
25(2+3cos2(5x)sin2(5x))4sin(5x)\frac{25 \left(2 + \frac{3 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right)}{4 \sqrt{\sin{\left(5 x \right)}}}
The third derivative [src]
     /           2     \         
     |     15*cos (5*x)|         
-125*|14 + ------------|*cos(5*x)
     |         2       |         
     \      sin (5*x)  /         
---------------------------------
               3/2               
          8*sin   (5*x)          
125(14+15cos2(5x)sin2(5x))cos(5x)8sin32(5x)- \frac{125 \left(14 + \frac{15 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{8 \sin^{\frac{3}{2}}{\left(5 x \right)}}