Mister Exam

Other calculators

Derivative of sqrt(sin5x)*e^cos3x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________  cos(3*x)
\/ sin(5*x) *E        
ecos(3x)sin(5x)e^{\cos{\left(3 x \right)}} \sqrt{\sin{\left(5 x \right)}}
sqrt(sin(5*x))*E^cos(3*x)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=sin(5x)f{\left(x \right)} = \sqrt{\sin{\left(5 x \right)}}; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Let u=sin(5x)u = \sin{\left(5 x \right)}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddxsin(5x)\frac{d}{d x} \sin{\left(5 x \right)}:

      1. Let u=5xu = 5 x.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx5x\frac{d}{d x} 5 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 55

        The result of the chain rule is:

        5cos(5x)5 \cos{\left(5 x \right)}

      The result of the chain rule is:

      5cos(5x)2sin(5x)\frac{5 \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}

    g(x)=ecos(3x)g{\left(x \right)} = e^{\cos{\left(3 x \right)}}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=cos(3x)u = \cos{\left(3 x \right)}.

    2. The derivative of eue^{u} is itself.

    3. Then, apply the chain rule. Multiply by ddxcos(3x)\frac{d}{d x} \cos{\left(3 x \right)}:

      1. Let u=3xu = 3 x.

      2. The derivative of cosine is negative sine:

        dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

      3. Then, apply the chain rule. Multiply by ddx3x\frac{d}{d x} 3 x:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        The result of the chain rule is:

        3sin(3x)- 3 \sin{\left(3 x \right)}

      The result of the chain rule is:

      3ecos(3x)sin(3x)- 3 e^{\cos{\left(3 x \right)}} \sin{\left(3 x \right)}

    The result is: 3ecos(3x)sin(3x)sin(5x)+5ecos(3x)cos(5x)2sin(5x)- 3 e^{\cos{\left(3 x \right)}} \sin{\left(3 x \right)} \sqrt{\sin{\left(5 x \right)}} + \frac{5 e^{\cos{\left(3 x \right)}} \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}

  2. Now simplify:

    (6sin(3x)sin(5x)+5cos(5x))ecos(3x)2sin(5x)\frac{\left(- 6 \sin{\left(3 x \right)} \sin{\left(5 x \right)} + 5 \cos{\left(5 x \right)}\right) e^{\cos{\left(3 x \right)}}}{2 \sqrt{\sin{\left(5 x \right)}}}


The answer is:

(6sin(3x)sin(5x)+5cos(5x))ecos(3x)2sin(5x)\frac{\left(- 6 \sin{\left(3 x \right)} \sin{\left(5 x \right)} + 5 \cos{\left(5 x \right)}\right) e^{\cos{\left(3 x \right)}}}{2 \sqrt{\sin{\left(5 x \right)}}}

The graph
02468-8-6-4-2-1010-5050
The first derivative [src]
                                                  cos(3*x)
      __________  cos(3*x)            5*cos(5*x)*e        
- 3*\/ sin(5*x) *e        *sin(3*x) + --------------------
                                             __________   
                                         2*\/ sin(5*x)    
3ecos(3x)sin(3x)sin(5x)+5ecos(3x)cos(5x)2sin(5x)- 3 e^{\cos{\left(3 x \right)}} \sin{\left(3 x \right)} \sqrt{\sin{\left(5 x \right)}} + \frac{5 e^{\cos{\left(3 x \right)}} \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}}
The second derivative [src]
/       __________                                                  2                            \          
|  25*\/ sin(5*x)        __________ /   2                \    25*cos (5*x)   15*cos(5*x)*sin(3*x)|  cos(3*x)
|- --------------- + 9*\/ sin(5*x) *\sin (3*x) - cos(3*x)/ - ------------- - --------------------|*e        
|         2                                                       3/2              __________    |          
\                                                            4*sin   (5*x)       \/ sin(5*x)     /          
(9(sin2(3x)cos(3x))sin(5x)15sin(3x)cos(5x)sin(5x)25sin(5x)225cos2(5x)4sin32(5x))ecos(3x)\left(9 \left(\sin^{2}{\left(3 x \right)} - \cos{\left(3 x \right)}\right) \sqrt{\sin{\left(5 x \right)}} - \frac{15 \sin{\left(3 x \right)} \cos{\left(5 x \right)}}{\sqrt{\sin{\left(5 x \right)}}} - \frac{25 \sqrt{\sin{\left(5 x \right)}}}{2} - \frac{25 \cos^{2}{\left(5 x \right)}}{4 \sin^{\frac{3}{2}}{\left(5 x \right)}}\right) e^{\cos{\left(3 x \right)}}
The third derivative [src]
/    /                     2      \                                                                        /         2     \                                               \          
|    |    __________    cos (5*x) |                                                                        |    3*cos (5*x)|                                               |          
|225*|2*\/ sin(5*x)  + -----------|*sin(3*x)                                                           125*|2 + -----------|*cos(5*x)                                      |          
|    |                    3/2     |                                                                        |        2      |                /   2                \         |          
|    \                 sin   (5*x)/                 __________ /       2                  \                \     sin (5*x) /            135*\sin (3*x) - cos(3*x)/*cos(5*x)|  cos(3*x)
|------------------------------------------- + 27*\/ sin(5*x) *\1 - sin (3*x) + 3*cos(3*x)/*sin(3*x) + ------------------------------ + -----------------------------------|*e        
|                     4                                                                                            __________                          __________          |          
\                                                                                                              8*\/ sin(5*x)                       2*\/ sin(5*x)           /          
(125(2+3cos2(5x)sin2(5x))cos(5x)8sin(5x)+135(sin2(3x)cos(3x))cos(5x)2sin(5x)+225(2sin(5x)+cos2(5x)sin32(5x))sin(3x)4+27(sin2(3x)+3cos(3x)+1)sin(3x)sin(5x))ecos(3x)\left(\frac{125 \left(2 + \frac{3 \cos^{2}{\left(5 x \right)}}{\sin^{2}{\left(5 x \right)}}\right) \cos{\left(5 x \right)}}{8 \sqrt{\sin{\left(5 x \right)}}} + \frac{135 \left(\sin^{2}{\left(3 x \right)} - \cos{\left(3 x \right)}\right) \cos{\left(5 x \right)}}{2 \sqrt{\sin{\left(5 x \right)}}} + \frac{225 \left(2 \sqrt{\sin{\left(5 x \right)}} + \frac{\cos^{2}{\left(5 x \right)}}{\sin^{\frac{3}{2}}{\left(5 x \right)}}\right) \sin{\left(3 x \right)}}{4} + 27 \left(- \sin^{2}{\left(3 x \right)} + 3 \cos{\left(3 x \right)} + 1\right) \sin{\left(3 x \right)} \sqrt{\sin{\left(5 x \right)}}\right) e^{\cos{\left(3 x \right)}}