Mister Exam

Derivative of sqrt(1-sin2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  ______________
\/ 1 - sin(2*x) 
$$\sqrt{1 - \sin{\left(2 x \right)}}$$
sqrt(1 - sin(2*x))
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Let .

        2. The derivative of sine is cosine:

        3. Then, apply the chain rule. Multiply by :

          1. The derivative of a constant times a function is the constant times the derivative of the function.

            1. Apply the power rule: goes to

            So, the result is:

          The result of the chain rule is:

        So, the result is:

      The result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
   -cos(2*x)    
----------------
  ______________
\/ 1 - sin(2*x) 
$$- \frac{\cos{\left(2 x \right)}}{\sqrt{1 - \sin{\left(2 x \right)}}}$$
The second derivative [src]
                 2       
              cos (2*x)  
2*sin(2*x) - ------------
             1 - sin(2*x)
-------------------------
       ______________    
     \/ 1 - sin(2*x)     
$$\frac{2 \sin{\left(2 x \right)} - \frac{\cos^{2}{\left(2 x \right)}}{1 - \sin{\left(2 x \right)}}}{\sqrt{1 - \sin{\left(2 x \right)}}}$$
The third derivative [src]
/           2                      \         
|      3*cos (2*x)      6*sin(2*x) |         
|4 - --------------- + ------------|*cos(2*x)
|                  2   1 - sin(2*x)|         
\    (1 - sin(2*x))                /         
---------------------------------------------
                 ______________              
               \/ 1 - sin(2*x)               
$$\frac{\left(4 + \frac{6 \sin{\left(2 x \right)}}{1 - \sin{\left(2 x \right)}} - \frac{3 \cos^{2}{\left(2 x \right)}}{\left(1 - \sin{\left(2 x \right)}\right)^{2}}\right) \cos{\left(2 x \right)}}{\sqrt{1 - \sin{\left(2 x \right)}}}$$