_____________
/ 2
/ sin (x)
/ 1 - -------
\/ 10
sqrt(1 - sin(x)^2/10)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-cos(x)*sin(x)
---------------------
_____________
/ 2
/ sin (x)
10* / 1 - -------
\/ 10
2 2
2 2 cos (x)*sin (x)
- 10*cos (x) + 10*sin (x) - ---------------
2
sin (x)
1 - -------
10
-------------------------------------------
_____________
/ 2
/ sin (x)
100* / 1 - -------
\/ 10
/ 2 2 2 2 \
| 30*cos (x) 30*sin (x) 3*cos (x)*sin (x)|
|400 - ----------- + ----------- - -----------------|*cos(x)*sin(x)
| 2 2 2 |
| sin (x) sin (x) / 2 \ |
| 1 - ------- 1 - ------- | sin (x)| |
| 10 10 |1 - -------| |
\ \ 10 / /
-------------------------------------------------------------------
_____________
/ 2
/ sin (x)
1000* / 1 - -------
\/ 10
4 4 4 2 4 4 2 4 2 2
2 2 60*cos (x) 60*sin (x) 36*cos (x)*sin (x) 3*cos (x)*sin (x) 36*cos (x)*sin (x) 440*cos (x)*sin (x)
- 800*sin (x) + 800*cos (x) - ----------- - ----------- - ------------------ - ----------------- + ------------------ + -------------------
2 2 2 3 2 2
sin (x) sin (x) / 2 \ / 2 \ / 2 \ sin (x)
1 - ------- 1 - ------- | sin (x)| | sin (x)| | sin (x)| 1 - -------
10 10 |1 - -------| |1 - -------| |1 - -------| 10
\ 10 / \ 10 / \ 10 /
-------------------------------------------------------------------------------------------------------------------------------------------
_____________
/ 2
/ sin (x)
2000* / 1 - -------
\/ 10