_____________ / 2 / sin (x) / 1 - ------- \/ 10
sqrt(1 - sin(x)^2/10)
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
So, the result is:
The result is:
The result of the chain rule is:
Now simplify:
The answer is:
-cos(x)*sin(x) --------------------- _____________ / 2 / sin (x) 10* / 1 - ------- \/ 10
2 2 2 2 cos (x)*sin (x) - 10*cos (x) + 10*sin (x) - --------------- 2 sin (x) 1 - ------- 10 ------------------------------------------- _____________ / 2 / sin (x) 100* / 1 - ------- \/ 10
/ 2 2 2 2 \ | 30*cos (x) 30*sin (x) 3*cos (x)*sin (x)| |400 - ----------- + ----------- - -----------------|*cos(x)*sin(x) | 2 2 2 | | sin (x) sin (x) / 2 \ | | 1 - ------- 1 - ------- | sin (x)| | | 10 10 |1 - -------| | \ \ 10 / / ------------------------------------------------------------------- _____________ / 2 / sin (x) 1000* / 1 - ------- \/ 10
4 4 4 2 4 4 2 4 2 2 2 2 60*cos (x) 60*sin (x) 36*cos (x)*sin (x) 3*cos (x)*sin (x) 36*cos (x)*sin (x) 440*cos (x)*sin (x) - 800*sin (x) + 800*cos (x) - ----------- - ----------- - ------------------ - ----------------- + ------------------ + ------------------- 2 2 2 3 2 2 sin (x) sin (x) / 2 \ / 2 \ / 2 \ sin (x) 1 - ------- 1 - ------- | sin (x)| | sin (x)| | sin (x)| 1 - ------- 10 10 |1 - -------| |1 - -------| |1 - -------| 10 \ 10 / \ 10 / \ 10 / ------------------------------------------------------------------------------------------------------------------------------------------- _____________ / 2 / sin (x) 2000* / 1 - ------- \/ 10