Mister Exam

Other calculators

Derivative of ln(sqrt(1-sin(2x)/(1+sin(2x))))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /    __________________\
   |   /       sin(2*x)   |
log|  /  1 - ------------ |
   \\/       1 + sin(2*x) /
$$\log{\left(\sqrt{1 - \frac{\sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}} \right)}$$
log(sqrt(1 - sin(2*x)/(1 + sin(2*x))))
Detail solution
  1. Let .

  2. The derivative of is .

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the quotient rule, which is:

            and .

            To find :

            1. Let .

            2. The derivative of sine is cosine:

            3. Then, apply the chain rule. Multiply by :

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: goes to

                So, the result is:

              The result of the chain rule is:

            To find :

            1. Differentiate term by term:

              1. The derivative of the constant is zero.

              2. Let .

              3. The derivative of sine is cosine:

              4. Then, apply the chain rule. Multiply by :

                1. The derivative of a constant times a function is the constant times the derivative of the function.

                  1. Apply the power rule: goes to

                  So, the result is:

                The result of the chain rule is:

              The result is:

            Now plug in to the quotient rule:

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
    cos(2*x)     cos(2*x)*sin(2*x)
- ------------ + -----------------
  1 + sin(2*x)                  2 
                  (1 + sin(2*x))  
----------------------------------
               sin(2*x)           
         1 - ------------         
             1 + sin(2*x)         
$$\frac{- \frac{\cos{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} + \frac{\sin{\left(2 x \right)} \cos{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}}}{1 - \frac{\sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}}$$
The second derivative [src]
  /      2               2              2                                        \
  |   sin (2*x)     2*cos (2*x)    2*cos (2*x)*sin(2*x)                          |
  |- ------------ + ------------ - -------------------- + sin(2*x)               |
  |  1 + sin(2*x)   1 + sin(2*x)                   2                     2       |
  |                                  (1 + sin(2*x))                   cos (2*x)  |
2*|--------------------------------------------------------------- - ------------|
  |                              sin(2*x)                            1 + sin(2*x)|
  |                        1 - ------------                                      |
  \                            1 + sin(2*x)                                      /
----------------------------------------------------------------------------------
                                   1 + sin(2*x)                                   
$$\frac{2 \left(- \frac{\cos^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} + \frac{\sin{\left(2 x \right)} - \frac{\sin^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}}}{1 - \frac{\sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}}\right)}{\sin{\left(2 x \right)} + 1}$$
The third derivative [src]
  /                          2                 2               2                                     /      2               2              2                         \\         
  |     7*sin(2*x)      6*cos (2*x)       6*sin (2*x)     6*cos (2*x)*sin(2*x)                       |   sin (2*x)     2*cos (2*x)    2*cos (2*x)*sin(2*x)           ||         
  |1 - ------------ - --------------- + --------------- + --------------------                     3*|- ------------ + ------------ - -------------------- + sin(2*x)||         
  |    1 + sin(2*x)                 2                 2                   3             2            |  1 + sin(2*x)   1 + sin(2*x)                   2              ||         
  |                   (1 + sin(2*x))    (1 + sin(2*x))      (1 + sin(2*x))         2*cos (2*x)       \                                  (1 + sin(2*x))               /|         
4*|--------------------------------------------------------------------------- - --------------- + -------------------------------------------------------------------|*cos(2*x)
  |                                    sin(2*x)                                                2                    /      sin(2*x)  \                                |         
  |                              1 - ------------                                (1 + sin(2*x))                     |1 - ------------|*(1 + sin(2*x))                 |         
  \                                  1 + sin(2*x)                                                                   \    1 + sin(2*x)/                                /         
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                  1 + sin(2*x)                                                                                  
$$\frac{4 \left(- \frac{2 \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}} + \frac{1 - \frac{7 \sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} + \frac{6 \sin^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}} - \frac{6 \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}} + \frac{6 \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{3}}}{1 - \frac{\sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}} + \frac{3 \left(\sin{\left(2 x \right)} - \frac{\sin^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} + \frac{2 \cos^{2}{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1} - \frac{2 \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}}{\left(\sin{\left(2 x \right)} + 1\right)^{2}}\right)}{\left(1 - \frac{\sin{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}\right) \left(\sin{\left(2 x \right)} + 1\right)}\right) \cos{\left(2 x \right)}}{\sin{\left(2 x \right)} + 1}$$