cot(x) / 4 \ \x + 5/
(x^4 + 5)^cot(x)
Don't know the steps in finding this derivative.
But the derivative is
The answer is:
cot(x) / 3 \
/ 4 \ |/ 2 \ / 4 \ 4*x *cot(x)|
\x + 5/ *|\-1 - cot (x)/*log\x + 5/ + -----------|
| 4 |
\ x + 5 /
/ 2 \
cot(x) |/ 3 \ 6 3 / 2 \ 2 |
/ 4\ || / 2 \ / 4\ 4*x *cot(x)| 16*x *cot(x) 8*x *\1 + cot (x)/ / 2 \ / 4\ 12*x *cot(x)|
\5 + x / *||- \1 + cot (x)/*log\5 + x / + -----------| - ------------ - ------------------ + 2*\1 + cot (x)/*cot(x)*log\5 + x / + ------------|
|| 4 | 2 4 4 |
|\ 5 + x / / 4\ 5 + x 5 + x |
\ \5 + x / /
/ 3 \
cot(x) |/ 3 \ / 3 \ / 2 3 / 2 \ 6 \ 2 5 2 / 2 \ 6 / 2 \ 9 3 / 2 \ |
/ 4\ || / 2 \ / 4\ 4*x *cot(x)| | / 2 \ / 4\ 4*x *cot(x)| | / 2 \ / 4\ 6*x *cot(x) 4*x *\1 + cot (x)/ 8*x *cot(x)| / 2 \ / 4\ 144*x *cot(x) 36*x *\1 + cot (x)/ 2 / 2 \ / 4\ 24*x*cot(x) 48*x *\1 + cot (x)/ 128*x *cot(x) 24*x *\1 + cot (x)/*cot(x)|
\5 + x / *||- \1 + cot (x)/*log\5 + x / + -----------| - 6*|- \1 + cot (x)/*log\5 + x / + -----------|*|- \1 + cot (x)/*cot(x)*log\5 + x / - ----------- + ------------------ + -----------| - 2*\1 + cot (x)/ *log\5 + x / - ------------- - ------------------- - 4*cot (x)*\1 + cot (x)/*log\5 + x / + ----------- + ------------------- + ------------- + --------------------------|
|| 4 | | 4 | | 4 4 2 | 2 4 4 2 3 4 |
|\ 5 + x / \ 5 + x / | 5 + x 5 + x / 4\ | / 4\ 5 + x 5 + x / 4\ / 4\ 5 + x |
\ \ \5 + x / / \5 + x / \5 + x / \5 + x / /